STATUS OF COMPLIANCE TO THE CONDITIONS STIPULATED IN ENV. CLEARANCE FOR BAUXITE PRODUCTION @ 6.825 MTPY WITH RESPECT TO PANCHPATMALI CENTRAL & NORTH BLOCK BAUXITE MINE,NALCO

(Ministry Letter No. J-11015/49/2008-IA. II(M) Dt. 20-02-2009)

Sl.No.	A. SPECIAL CONDITIONS	Status of Compliance as on 31.3.2023 The lease area remains unchanged.										
i	The environmental clearance is in continuation to the environmental clearance earlier accorded to this project by the Ministry vide letter No. J-11015/09/2000-IA.II (M) dated 30.07.2004. The lease area shall remain unchanged.	At present the lease hectares.	area of Central an		*							
ii	The project proponent shall obtain Consent to Establish from the State Pollution Control Board and effectively implement all the conditions stipulated therein.	The consent to establish for 6.825 MTPY production capacity for Central-North Block was obtained from SPCB, Odisha vide letter no. 16213/Ind-II-NOC-5666, DTD. 4-9-2013. Forest Clearance exists vide MoEF&CC letter No- F.No.8-40/1993-FC(PT-I) Dt.15 th September 2014 for the entire forest land of 1294.283 ha of forest land.										
iii	The environmental clearance is subject to grant of forestry clearance. The project proponent shall obtain requisite prior forestry clearance under the Forest (Conservation) Act,1980 for working in the forest area											
iv	The mining operations shall be confined to the hill tops only and restricted to above ground water table and it should not intersect the groundwater table. In case of working below the ground water table, prior approval of the Ministry of Environment and Forests and the Central Ground Water Authority shall be obtained, for which a detailed hydro-geological study shall be carried out	It is revealed from water table exists mining activities a Mtrs only from the on the ground water	below 80 mtr. from the going on. As the surface, there is	om the plateau Mining activiti	top, where the es limited to 3							
v	The project proponent shall ensure that no natural watercourse and / or water resources are obstructed due to any mining operations. Adequate measures shall be taken while diverting seasonal channels emanating from the mine lease, during the course of mining	mining operation v	course exists on which is confined to rse. No rain water w the valley by con	o hill top does from the mining	no way obstru g area is allowe							
vi	operation. The top soil shall temporarily be stored at earmarked site(s) only and it should not be kept unutilized for long. The topsoil shall be used for land	backfilling of min	rated and utilized		12.							
	reclamation and plantation.	Year	Top soil generated (MT)	Top soil utilized (MT)	Top soil stored (MT)							
		2017-18	57,040	57,040	Nil							
		2018-19	1,04,070	1,04,070	Nil							
		2019-20	1,22,410	1,22,410	Nil .							
		2020-21	1,07,560	1,07,560	Nil							
W.		2021-22	. 115000	115000	Nil							
		2022-23	133490	133490	Nil							
III												

vii	The overburden (OB) generated shall be concurrently backfilled. There shall be no external over burden dump. The entire backfilled area shall be progressively afforested. Monitoring and management of rehabilitated areas should continue until the vegetation becomes self-sustaining. Compliance status shall be submitted to the	operation. The OB generate	is being concur the mined out are ed (including top years are as follows	ea goes on conc	urrent to minin
	Ministry of Environment and Forest and its Regional Office located at Bhubaneswar on six monthly basis.	Year	OB generated (MT)	OB utilized (MT)	OB stored (MT)
	Bildoaneswar on six monumy basis.	2017-18	7,20,000	7,20,000	NI:1
		2018-19	8,19,300	8,19,300	Nil Nil
		2019-20	6,84,690	6,84,690	Nil
		2020-21	7,64,205	7,64,205	Nil
		2021-22	798225	798225	Nil
		2022-23	788300	788300	Nil
ix	Catch drains and siltation ponds of appropriate size shall be constructed around the mine working, soil and mineral dumps to prevent run off of water and flow of sediments directly into the water bodies. The water so collected shall be utilized for watering the mine area, roads, green belt development etc. the drains shall be regularly desilted, particularly after the monsoon, and maintained properly. Garland drains, settling tanks and check dams of appropriate size, gradient and length shall be constructed around the mine pit, topsoil dumps and the mineral dumps to prevent run off of water and flow of sediments directly into the water bodies and sump capacity shall be designed keeping 50 % safety margin over and above peak sudden rainfall (based on 50 years data) and maximum discharge in the area adjoining the mine site. Sump capacity shall also provide adequate retention period to allow proper settling of silt material. Sedimentation pits shall be constructed at the corners of the garland drains and desilted at regular intervals Dimension of the retaining wall at the OB benches within the mine to check	from the mineral through drains. R cannot go out due porous mined out peripheral barrier any rain water fro pits of adequate	te dumps or OB d adopted. The and the sump can and hence there is	near crusher ho lated in the sedir rier and percolate is a elongated sed and eastern sides. Inside the miner which collects prorous nature of the which collects with the recharge the sedimentation proposed in the proposed in the sedimentation of the sedimentati	backfilling of
(run-off and siltation should be based on the rainfall data.	All the runoff are mining area where	situ peripheral bar diverted to the the collected water	rier all around the sedimentation ta er percolates into	ne mining area. nks inside the the ground
	The project proponent shall develop a 7.5 m wide green belt in the safety zone all around the mining lease. In addition, plantation shall be raised in the backfilled and the reclaimed area, around void roads etc. by planting the native species in consultation with the local DFO / Agriculture Department. The density of the trees should be around 2500 plants per ha.	A green belt having all around the Mindeveloped/mainta species like Jamun, Karanj, etc are bedevelopment of the been carried out in	ng minimum width ed out area in the ined 500M ahead Rose Apple, Guav being planted at the green belt. In add	n of 7.5 mtr has be safety zone. The of Mining opera, Mangos, Jackfone rate of 2500 lition to that plan	een developed is green belt is cration. Native fruit, Tamarind plants /ha for

As on 31.3.2023 the plantation carried out in different areas in Central and North Block are as follows. (i) Mining area including peripheral barrier:15,57,327 (ii) Conveyor corridor: 89,300 (iii) Auxiliary facilities: 72,800 (iv) Water supply and powerline: 5,000 (v)Around explosive magazine: 1,70,000 (vi)Unused area: 68,956. (vi)Outside lease area: 13,95,354. Total trees planted in Central and North Block as on 31.3.2023 is 33, 58,737. Regular water sprinkling is being done using 06 nos of self Regular water sprinkling shall be χi carried out in critical areas prone to air propelled mobile water tankers. pollution and having high levels of Provision of PLC controlled Auto sprinkling system installed over SPM and RSPM such as around Permanent haul roads (4.5 km). crushing and screening plant, loading and unloading point and all transfer The AAQ quality monitoring is done every month. The monitoring point. Extensive water sprinkling shall locations are A1(Baiguda village), A2(Bitiarguda Village), be carried out on haul roads. It shall be A3(Goudguda village), A4(Kakriguma village), A5(Upper Meeting ensured that the Ambient Air Quality village), A6(Near Main Haul Road Area), A7(Near Crusher parameters conform to the norms HouseA8(Roof of the HEMM main building), A9(Roof of prescribed by the Central Pollution Panchpatmali Bhavan), A10(Near SMCP North Block). The latest Control Board in this regard. results of ambient air analysis are given at Annexure-I. NALCO has been measuring water flow rate of perennial streams at Regular monitoring of the flow rate of xii the foot hill in 17 locations on four specific periods during the the springs and perennial nallahs month of Jan, April, Aug and Nov every year. flowing in and around the mine lease For 2022-23, the stream flow has been measured at 17 locations shall be carried out and records during April 2022, August 2022, November 2022 and January maintained. 2023. The locations are 1.Litiguda, 2.Jholaguda, 3.Bhitara Bhejaput, 4. Barigurha, 5. Kapsiput, 6. Litaputta, 7. Murdagurha, 8. Gaurhaguda, 9. Tenguligurha, 10. Kakirguma, 11. Tentulipadar, 12. Keler, 13. Kusumagurha, 14. Kirajhola, 15. Rangapani, 16. Pansaputa and 17. Balipeta. For 21-22, the results are given at Annexure-II. The plateau top, where the mining operation is confined, stands out The project authority shall implement xiii about 300 mtr above the surrounding valley areas. The ground water suitable conservation measures to exists at a depth of about 80mtr. augment ground water resources in the area in consultation with the Regional At present, 3 no. of rain water harvesting reservoirs have been Director, Central Ground Water Board. developed atop the mines. The capacity of the three nos of ponds are as follows. Capacity of Description SI No. storage in cum. 19800 Pond no-1 1 23625 Pond no-2 2 10000 Pond no-3 3 Also, rooftop rainwater harvesting structures for the Administration Building, Mine Manager's Building and MVT centre has been completed by 2014 to augment ground water recharging. Further, the method of Mining & the peripheral barrier all around does not allow the storm water from within the mining area to go outside valley areas. The water thus trapped, percolates down & recharges the ground water. Further as per advice of CGWB, Bhubaneswar, a suitable agency (M/s Geoenvitech Research & Services Pvt Ltd, Bhubaneswar) was appointed for carrying out a hydro-geological study for suggesting measures for rain water harvesting and augmentation of ground water resources. The recommendations are implemented.

the

	Regular monitoring of ground water level and quality shall be carried out in and around the mine lease by establishing a network of existing wells and constructing new piezometers	exists at a	great depth i.e. below 80 m						
	during the mining operation. The monitoring shall be carried out four times in a year, pre-monsoon (April-May), monsoon (August), Post-monsoon (November) and winter (January) and the data thus collected may be sent regularly to the Ministry of Environment and Forest and its Regional Office, Bhubaneswar, the Central Ground Water Authority and the Regional Director, Central Ground Water Board. If at any stage, it is observed that the ground water table is getting depleted due to the mining activity, necessary corrective measures shall be carried out.	Village, Tentulipadar Village, Ichhapur Village, Mundagarhati Village, Bijaghati Village, Putraghati Village, Putraghati Village, Chararha Village, Kapsiput Village, Jambagurha Village, Shriguda Village, Kakiriguma Village, and Sorisha padar Village. The parameters being monitored are as per IS 10500:2012 specified for drinking water. For 22-23, the results are given at annexure-III. d One no of piezeometer has been constructed for monitoring of ground water level.							
XV	Appropriate mitigative measures shall be taken to prevent pollution of the Indravati River, the Vagabvalli river, Banadehar River and Kerandi River in consultation with the State Pollution	specified c	of rivers in consultation wit	ave been taken to prevent th SPCB, Odisha. They have the waste water streams and not not water bodies.					
	Control Board.	Mines (2) r Mining are around the retain the w contaminated diverted to and water p treated in se has got add Canteen & suppression outside. A emanating of regularly an no way the	ain water (with sediment) is as because of the insitu- p mining pit. 21 check dark ashouts if any from the mining water bodies. (3) The raisedimentation basins where percolates into the ground. The equate facility to treat was the treated water is contained and plantation purpose and as already explained, Furtifrom the Panchpatmali hill dall parameters are within the parameters a	e drainage water generated at also not allowed to go out of eripheral barrier existing all ms have been constructed to ning area going downhill and n water around stockpiles are are solid particle settle down (4)Effluent from toilets are being a zero discharge mine, h water from Workshop & completely reused for dust no waste water is discharged her the perennial streams slopes are being monitored prescribed norms. As such in the river basins which are any					
xvi	competent authorities for drawl of requisite quantity of water (surface water and ground water) required for the project	Permission for drawal of surface water from Jholaguda streams upto 0.5MGD is available vide letter No. 15986, dtd.13-6-2018.							
xvii	implemented in consultation with the Regional Director, Central Ground	At present, developed at as follows.	3 no. of rain water harve op the mines. The capacity of	sting reservoirs have been of the three nos of ponds are					
	Water Board	SI No.	Decription	Capacity of					
		1	Dand no 1	storage in cum.					
		2	Pond no-1 Pond no-2	19800					
		2	Pond no-	23625					

		Further, the method of Mining & the peripheral barrier all around does not allow the storm water from within the mining area to go outside valley areas. The water thus trapped, percolates down & recharges the ground water.
		Further as per advice of CGWB, Bhubaneswar, a suitable agency (M/s Geoenvitech Research & Services Pvt Ltd, Bhubaneswar) was appointed for carrying out a hydro-geological study for suggesting measures for rain water harvesting and augmentation of ground water resources. The recommendations are implemented.
xviii	Vehicular emissions shall be kept under control and regularly monitored.	Monitoring of exhaust emission of all the vehicles operating at mine is conducted once in six months through an outside agency
	Measures shall be taken for	authorized by SPCB, Odisha.
	maintenance of vehicles used in mining	AND CONTRACTOR OF THE CONTRACT
	operations and in transportation of mineral within the lease up to the	Bauxite ore is transported in the mine area in an environmentally safe
	stockyard. The mineral transportation	manner by limiting the speed limit of transporting equipment and
	within the mine lease shall be carried	also by maintaining proper road conditions.
	out through the covered trucks only and the vehicles carrying the mineral	
	shall not be overloaded	WOOD WILL SAME
xix	No blasting shall be carried out after the sunset. Blasting operation shall be carried out only during the daytime.	Blasting has been stopped since April 2022. Whenever it will be done in future, it will be done during shift change over between 1.15PM to 2PM. No blasting will be done beyond day light hours. Further,
	Controlled blasting shall be practiced. The mitigative measures for control of	controlled blasting will be practiced with use of NONELs for
	ground vibrations and to arrest fly	sequential blasting to reduce fly rocks, boulders & ground vibration.
	rocks and boulders should be	
VV	implemented. Drills shall either be operated with dust	All drills are operated with vacuum dust extraction system with
XX	extractors or equipped with water injection system	provision of water injection for dust suppression.
xxi	Mineral handling area shall be	All transfer points in crushing & Conveying system are provided
7.	provided with adequate number of high efficiency dust extraction system. Loading and unloading areas including all the transfer points should also have efficient dust control arrangements. These should be properly maintained and operated.	with efficient dry fog system to suppress dust at source.
xii	Consent to operate shall be obtained	At present Mine is operating with consent to operate for 6.825
	from the State Pollination Control Board, Orissa prior to start of enhanced production from the mine.	MTPA production capacity vide order No. 4162/Ind-I-Con-92, Dtd. 17-3-2022/CONSENT ORDER NO.58, which is valid upto 31.3.2024.
xxiii	Sewage treatment plant shall be installed for the colony. ETP shall also	The Mine & Refinery combined township exists 20KM away a Damanjodi where sewerage treatment plant is provided wherea
	be provided for the workshop and wastewater generated during the mining operation	The mine is operating a zero discharge system for effluents wher all the waste water is treated, analysed and reused for sprinkling o the haul road for dust suppression and plantation. Effluents from the Mechanical Workshop area is being channelized through well
		designed oil-water separation tank where oil is collected and the clear water is collected in zero discharge sump. There is a canteen waste water disposal system (biological treatment unit) designed constructed and maintained to treat the canteen waste water. All the
		treated waste water from canteen and HEMM workshop is used for horticulture & dust suppression.
xxiv	Pre-placement medical examination and periodical medical examination of the workers engaged in the project shall be carried out and records maintained. For the purpose, schedule of health examination of the workers	All employees and contract workers are provided with protective devices. For all employees of NALCO, periodical medical examinations are done & records thereof maintained. During Apr 2022-March 2023, 463 nos of employees have undergone periodical medical testing. No occupational diseases have been detected so face

	should be drawn and following accordingly.	
XXV	Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc. the housing may be in the form of temporary structures to be removed after the completion of the project.	No labour camp exists on plateau top. All construction laborers /workers come from Damanjodi & surrounding villages at the foothill of Panchpatmali hill.
xxvi	The project proponent shall take all precautionary measure during mining operation for conservation and protection of endangered flora and fauna found in the study area. Action plan for conservation of flora and fauna shall be prepared and implemented in consultation with the State Forest and Wildlife Department. Necessary allocation of funds for implementation of the conservation plan shall be made and the fund so allocated shall be included in the project cost. All the safeguard measures brought out in the Wildlife Conservation Pan so prepared specific to the project site shall be effectively implemented. A copy of action plan shall be submitted to the Ministry of Environment and Forest and its Regional Office, Bhubaneswar.	A Site Specific Wildlife Management plan as prepared by NALCC has been approved by PCCF(Wildlife), Odisha, Bhubaneswar vide Memo No. 4011/1 WL(C) SSP-397/2013 Dt. 19 th May 2014, On the basis of the above stated approval, DFO, Koraput had raised a demand note No.1838 Dt. 26-05-2014 for payment of Rs. 2011.50 lakhs. With reference to the above stated demand note, NALCO has made a payment of Rs. 2011.50 lakhs in Orissa CAMPA account in Corporation Bank, Lodhi Road, New Delhi through RTGS on Dt.04-06-2014. Besides the above, a total amount of Rs 7, 62, 85,312/- have been deposited in different phases as per demand letters of DFO, Koraput in Orissa CAMPA by NALCO towards Regional Wildlife Management Fund for implementation by State Forest Department. The conservation measures suggested are under process of implementation. The copy of action plan has been submitted to MoEF&CC vide letter No- NAL/MIN/GM(Mines)2017/677, Dtd. on 12-10-2017. The status of implementation of conservation measures are given in Annexure-IV.
xxvii	Digital processing of the entire lease area using remote sensing technique shall be carried out regularly once in three years for monitoring land use pattern and report submitted to Ministry of Environment and Forests and its Regional Office, Bhubaneswar	A digital land-use map (shape file) as on 31.3.2021 has been submitted to MoEF&CC, Bhubaneswar on 1st July 2021 vide mail.
xxviii	A Final Mine Closure Plan along with details of Corpus Fund shall be submitted to the Ministry of Environment & Forests 5 years in advance of final mine closure of approval. GENERAL CONDITIONS	Final mine closure plan shall be submitted to the Ministry of Environment & Forests 5 years in advance of final mine closure.
	No change in mining technology and scope of working should be made without prior approval of the Ministry of Environment & Forests	The user agency (NALCO) undertakes that there shall be no change in technology and scope of work without prior approval from MoEF.
i	No change in the calendar plan including excavation, quantum of mineral bauxite and waste should be made	The user agency (NALCO) undertakes that there shall be no change in calendar plan including excavation, quantum of Bauxite, Waste/OB generation of work without prior approval from competent authority.
ii	At least four ambient air quality- monitoring stations should be established in the core zone as well as in the buffer zone for RSPM, SPM, SO2 & NOv monitoring. Logarity of	At present 10 air quality monitoring stations are established in and around Mines based on the mentioned factors and measurements are being done once in every month for parameters as per the latest MOEF notification of September 2009. The location of monitoring stations has been fixed in consultation with SPCB, Odisha.

	undertaken in consultation with the State Pollution Control Board.	
<i>y</i>	Data on ambient air quality (RSPM, SPM, and SO2 & NOx) should be regularly submitted to the Ministry of Environment and Forests including its Regional office located at Bhubaneswar and the State Pollution Control Board / Central Pollution Control Board once in six month.	Data on air quality is being collected once in every month. Records submitted to statutory authorities once in six months. The AAQ quality monitoring is done every month. The monitoring locations are A1(Baiguda village), A2(Bitiarguda Village), A3(Goudguda village), A4(Kakriguma village), A5(Upper Meeting village), A6(Near Main Haul Road Area), A7(Near Crusher HouseA8(Roof of the HEMM main building), A9(Roof of Panchpatmali Bhavan), A10(Near SMCP North Block). The latest results of ambient air analysis are given at Annexure-I.
**	Fugitive dust emissions from all the sources should be controlled regularly. Water spraying arrangement on haul roads, loading and unloading and at transfer points should be provided and properly maintained.	Water spraying on haul road is carried out both with fixed (4.5 km long) and mobile sprinklers (6 nos). Loading points of crusher house is provided with dry fog system. One no of fog cannon has also been deployed in the stock pile area to suppress dust. Transportation of Bauxite ore is carried out through a cable belt conveyor of 14.6KM long, provided with hood all along.
vi	Measures should be taken for control of noise levels below 85 dBA in the work environment. Workers engaged in operations of HEMM, etc. should be provided with ear plugs / muffs	Noise monitoring in work zone is taken up once in every quarter. Equipment selection is done keeping noise reduction features in view. Workers are provided with ear plugs /muffs. Besides ambient noise level is being monitored at 10 locations in and around the mine. Noise level monitoring for the period Apr22 to March 2023 is available at annexure-V.
vii	Industrial waste water (workshop and waste water from the mine) should be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19 th May, 1993 and 31 st December 1993 or as amended from time to time. Oil and grease trap should be installed before discharge of workshop effluents.	The mine is operating a zero discharge system for effluents where all the waste water is treated, analysed and reused for sprinkling on the haul road for dust suppression and plantation. Effluents from the Mechanical Workshop area is being channelized through well-designed oil-water separation tank where oil is collected and the clear water is collected in zero discharge sump. There is a canteen waste water disposal system (biological treatment unit) designed constructed and maintained to treat the canteen waste water. All the treated waste water from canteen and HEMM workshop is used for horticulture & dust suppression. The treated waste water from canteen and HEMM workshop area are analysed before being reused
		The parameters are analysed every month. The analysis results for Apr22-March 2023 are available at Annexure-VI . The above treated water is completely reused without discharging outside.
viii	Personnel working in dusty areas should wear protective respiratory devices and they should also be provided with adequate training and information on safety and health aspects Occupational health surveillance programme of the workers should be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed	All employees and contract workers are provided with protective devices. Regular training programmes are held in MVT center or health and safety aspects for contract workers as well as employees. For all employees of NALCO, periodical medical examinations are done & records thereof maintained. During April 2022-March 2023, 463 nos of employees have undergone periodical medical testing No occupational diseases have been detected so far.
ix	A separate environmental management cell with suitable qualified personnel should be set-up under the control of a Senior Executive, who will report	A Separate Environmental Management Cell, being headed by GM(Env) who is reporting directly to GGM (Mines), exists for management of environment.

	directly to the Head of the Organization.					7.3
Х	The funds earmarked for environmental protection measures should be kept in separate account and should not be diverted for other purpose. Year wise expenditure should be reported to the Ministry of Environment and Forests and its Regional Office located at Bhubaneswar	sepa adeq for in The diver meet envin expe envir total date Panc	rate account for uate fund is pro- nstallation and fund earmarked for any other than capital commental commental commental are capexpenditure with and the recurrish patmali Baux	or environment ovided under the maintaining of for environment purpose. A control measure central and Nurried out through the reporteding expenditurite Mine for the Environmental envir	tem does not all natal protection rethe budget of exectorial protection mental protection adequate fund is a gexpenses to see inclusive of North Block and bugh common conjointly. The cap re for protection the last three year all Pollution contributions.	measures. However, cuting department control measures is new always allocated or implement to plantation. Mail South Block ontracts. Hence to ital expenditure to of environment is are as follows
		S.		2020-21	2021-22	2022-23
		No	Activity	(Rs)*	(Rs)*	(Rs)**
		1.	Backfilling and land reclamation*	4,74,00,990	7,44,68,438	76,667,560.04
		2.	Environment al Pollution Control	22,78,520	40,41,193	60,26,649.00
		3.	Plantation and Horticulture	67,36,291	94,23,930	84,73,229.00
		4	Operation and maintenance of Water Sprinkling system & zero discharge system	12,00,000	15,48,846	9,95,482.00
			Total	5,76,15,801 .00	8,94,82,407.00	9,21,62,920.07
xi	The project authorities should inform to the Regional Office located at Bhubaneswar regarding date of financial closures and final approval of the project by the concerned authorities and the date of start of land	* The Centra * Th only.	proportionate corrial as compar values contain al and North Bl e values conta	ost for diesel i ed to the total combined ex lock. in expenditure	amation cost is can neurred in handlexcavation. penditure for Some for Central and the kept informed	ing of overburde uth Block and North Block
xii	development work The Regional Office of this Ministry located at Bhubaneswar shall monitor compliance of the stipulated conditions. The project authorities should extnd full cooperation to the officer (s) of the Regional Office by furnishing the requisite data / information / monitoring reports	officer	s of the Re neswar by furr	gional Offic	perations will be e of the Mini ite data, informa	stry located at
iii	The project proponent shall submit six monthly report on the status of the	stipulat	ted environme	ntal safeguare	s of the implen ds is being subr Control Board re	nitted to MoEF

	environmental safeguards to the Ministry of Environment and Forests, its Regional Office Bhubaneswar, Central Pollution Control Board and State Pollution Control Board. The proponent shall upload the status of compliance of the environmental clearance conditions on their website and update the same periodically.	
xiv	A copy of clearance letter shall be marked to concerned Panchyat /local NGO, if any, from whom suggestion / representation has been received while processing the proposal	No such suggestions / representation has been received from the Panchayat / local NGO, while processing the clearance proposal.
xv	The State Pollution Control Board should display a copy of the clearance letter at the Regional office, District Industry Centre and the Collector's office / Tahsildar's Office for 30 days	The clearance letter has been displayed at the required places.
xvi	The project authorities should advertise at least in two local newspapers widely circulated, one of which shall be in the vernacular language of the locality concerned, within 7 days of the issue of the clearance letter informing that the project has been accorded environmental clearance and a copy of the clearance letter is available with the State Pollution Control Board and also at web site of the Ministry of Environment and Forest at http://envfor.nic.in and a copy of the same should be forwarded to the Regional Office of the Ministry located at Bhubaneswar.	The accordance of Environmental clearance has been advertised in two local news papers.

Rasheed Waris) Group General Manager(Mines)

ANNEXURE-I

AMBIENT AIR QUALITY ANALYSIS AT PANCHPATMALI CENTRAL & NORTH BLOCK BAUXITE MINE

Monitoria	D	ls-	NALC	U (202	(2-23)							BLOC)			
Monitoring station	Parameter	Norm	Apr'22	May'2	Jun'22	Jul'22	Aug'22	Sep'2	2 Oct'2	Nov'2	Dec'2	Jan'23	Feb'2	Mar'2	Avg
A1 (Baiguda	RPM (µg / m3)									-	-	+	3	3	
village)	PM 2.5(60µg / m3)	60	32.5	30.5	22.5	20.4	14.64	18.7	20.45	23.68	26.76	29.56	29.46	26.43	24.6
	PM10(100µg / m3)	100	56.9	56.9	38.5	35.9	27.47	38.3		47.52	50.15		51.28	49.71	45.4
	NRPM (µg/m3)		59.8	59.8	40.8	38.6	30.35	41.5	_	51.62	56.8		-	-	-
4	SPM(µg/m3)		117	117	79.4	74.5	57.82	79.8		99.14	106.96	_			94.3
	SO ₂ (80 µg/m3)	80	8.09	7.28	6.14	6.58	4.36	5.18		7.41	8.16	7.01	8.19	8.19	6.9
	NO _X (80μg/m3)	80	16.5	13.4	14.5	16.6	10.97	11.9		12.19	14.56	12.46	13.54	15.61	
	CO (2 mg/m3)	2	0.56	0.43	0.31	0.41	0.22	0.3	0.42	0.41	-	-	0.37	0.35	13.8
A2 (Bitiarguda	RPM (µg / m3)						0.22	0.0		0.41	0,4	0.40	0.01	0.33	0.39
Village)	PM 2.5(60µg / m3)	60	31.6	29.7	27.4	21.5	13.86	19.8	21.64	22.89	28.51	30.42	30.52	31.22	25.7
	PM10(100µg / m3)	100	52.6	55.7	48.6	37.6	24.69	40.4		43.68	52.36	54.27	53.49	53.83	25.7
	NRPM (µg/m3)		55.9	58.8	49.3	40.4	26.41	43.9	44.85	48.31	58.58				46.5
	SPM(µg/m3)		109	114	97.9	78	51.1	84.3	86.69	91.99	110.94	_		57.16 110.99	50.0
	SO ₂ (80 μg/m3)	80	8.21	7.06	7.36	6.29	4.64	6.27	7.26	7.29	8.04	7.23	8.32	8.36	96.6
	NO _X (80μg/m3)	80	16.4	14.2	16.7	15.5	11.62	13.3	13.42	13.52	13.67	13.37	12.62	10000	7.1
	CO (2 mg/m3)	2	0.58	0.41	0.41	0.4	0.24	0.31	0.4	0.42	_	-		13.75	14.0
A3 (Goudguda	RPM (μg / m3)		0.00	0.41	0.41	0.4	0.24	0.31	0.4	0.42	0.4	0.42	0.35	0.3	0.39
rillage)	PM 2.5(60µg / m3)	60	34.2	31.7	26.2	23.2	16.42	16.2	23.12	21.54	24.18	21 21	20.24	20.45	
	PM10(100µg/m3)	100	54.8	57.6	45.9	40.8	29.81	33.9	42.4	44.19	50.27	31.21 55.14	28.31	30.15	25.5
	NRPM (µg/m3)		57.7	59.7	48.3	43.2	31.72	36.8	46.76		_		49.51	50.94	46.3
	SPM(µg/m3)		112	117	94.1	84.1	61.53	70.6	89.16	49.83 94.02	52.19 102.46	_	54.36	56.37	49.7
14 (Kakriguma 1 illage) 1	SO ₂ (80 μg/m3)	80	8.13	7.12		6.02	4.24		6.78	7.58	8.32	116.26	103.87	107.31	96.0
	NO _X (80μg/m3)	80	17.2	13.7	17.3			5.32	13.61			7.38	9.23	8.04	7.1
	CO (2 mg/m3)	2	0.49	0.44		15.2	10.85	12.5		11.86	14.61	13.61	14.45	14.52	14.1
4 (Kakriguma	RPM (μg / m3)		0.49	0.44	0.43	0.42	0.23	0.32	0.43	0.4	0.42	0.38	0.34	0.34	0.39
	PM 2.5(60µg / m3)	60	30.6	34.9	29.2	16.0	10.24	47.0	40.00	24.24	07.01	20.10			
0,	PM10(100µg / m3)	100	53.9	58.4			19.21	17.9	19.63	24.31	27.34	28.13	26.43	28.34	25.2
	NRPM (µg /m3)	100	55.5	61.7			35.76	35.1	37.52	49.37	51.49	50.82	50.23	49.59	45.85
	SPM(µg/m3)		109	120			37.14	37.8	39.37	53.41	54.27	54.95	55.42	54.95	49.16
	SO ₂ (80 μg /m3)	80	8.46			65.9	72.9	72.9	76.89	102.78	105.76	105.77	105.65	104.54	95.03
	NO _X (80μg/m3)	80		8.05		5.74	5.12	6.43	7.19	6.91	8.51	8.09	8.51	8.23	7.37
100	CO (2 mg/m3)		16.3	15.5			13.94	14.4	14.5	10.34	15.18	13.82	13.92	12.91	14.39
5 (Upper	RPM (µg / m3)	2	0.52	0.52	0.44	0.36	0.31	0.3	0.41	0.39	0.39	0.4	0.36	0.32	0.39
leeting /	PM 2.5(60µg / m3)	60	25.0	25.0	24.2	10.0	22.22		00.70						
illage)	PM10(100µg / m3)		35.8	35.2	- V-2011 / V-201		22.93	21.6	22.76	28.52	29.12	34.85	31.51	32.17	28.77
6-/	NRPM (µg /m3)	100		59.9			38.24	48.3	43.45	57.41	58.55	59.51	53.41	54.27	51.10
	SPM(µg/m3)	-		64.4			42.43	51.6	47.22	62.98	66.32	63.64	57.21	59.64	55.38
		00	114	124			80.67	100		120.39		123.15	_	113.91	106.48
	SO ₂ (80 μg /m3)	80		100001720			6.41	7.51	7.39	7.12	9.23	7.36	8.48	9.05	7.81
	NO _X (80μg /m3)	80			_		15.73	16.7	14.42		17.29	11.95	13.83	16.73	15.91
E /Alexandraia	CO (2 mg/m3)	2	0.61	0.61	0.42	0.38	0.34	0.39	0.6	0.43	0.48	0.41	0.38	0.41	0.46
(Near Main	RPM (µg / m3)		10.0												
aul Road Area)	110	60						29.5	_		38.25		37.16	37.51	35.30
	PM10(100µg / m3)	100						54.2	58.34	66.18	69.22	70.23	56.29	58.32	60.31
	NRPM (µg/m3)		2122222222	3.370			_	56.3	62.51	70.51	78.95	74.22	61.6	66.72	65.12
	SPM(µg/m3)	20,000	-10000000	136	123	102	112.9	110	120.25	136.69	148.17				125.38
	SO ₂ (80 μg/m3)	80	9.21	9.21	9.38 7	7.85	8.26	10.7	9.24	9.15	10.64	8.17	_	13.42	9.79
	NO _X (80μg/m3)	80	20.2	19.5	24.6		18.81	24	20.64	16.75	21.76	15.21	20.21	19.47	20.05
	CO (2 mg/m3)	2	0.96			0.5		0.82	0.82	0.78	0.69	0.82	0.52		0.74

SANJAYA KUMAR PATNAIK General Manager(Env.) Panchpatmali Bauxite Mine NALCO, Damanjodi-763008

Monitoring station	Parameter	Norm	Apr'22	May'2	Jun'22	Jul'22	Aug'22	Sep'22	Oct'22	Nov'2	Dec'2	Jan'23	Feb'2	Mar'2	Avg
A7 (Near	RPM (µg / m3)														
7.	PM 2.5(60µg / m3)	60	44.56	39.32	46.62	36.49	38.45	36.24	34.43	42.87	46.51	49.52	38.87	39.45	41.11
	PM10(100µg / m3)	100	66.07	69.83	68.36	60.48	61.13	68.76	63.63	80.72	79.34	78.31	58.17	59.4	67.85
	NRPM (µg/m3)		69.14	72.84	74.24	65.42	65.27	69.47	68.15	84.71	86.54	82.16	64.17	67.53	72.47
	SPM(µg/m3)		135.2	142.7	142.6	125.9	126	138.2	131.78	165.42	165.88	160.49	122.34	126.93	140.29
	SO ₂ (80 µg /m3)	80	9.09	9.08	9.03	7.51	8.04	9.18	8.65	8.34	10.06	9.23	10.73	12.31	9.27
	NO _X (80μg/m3)	80	19.48	19.41	21.44	18.28	17.5	20.34	18.45	15.29	18.52	17.56	16.18	18.21	18.39
	CO (2 mg/m3)	2	0.84	0.74	0.71	0.47	0.49	0.69	0.78	0.68	0.58	0.76	0.48	0.57	0.65
A8 (Roof of the	RPM (µg / m3)														
HEMM main	PM 2.5(60µg / m3)	60	38.25	36.86	33.15	24.31	26.3	24.72	25.51	28.56	31.43	36.47	32.42	33.59	30.96
building)	PM10(100µg / m3)	100	58.86	59.22	55.42	42.17	39.57	50.52	51.81	58.64	61.48	69.12	53.76	53.15	54.48
	NRPM (µg/m3)		62.72	63.48	59.35	46.59	42.15	52.89	55.8	63.45	67.42	76.31	57.38	60.29	58.99
	SPM(µg/m3)		121.6	122.7	114.8	88.76	81.72	103.3	107.61	122.09	128.9	145.43	111.14	113.44	113.45
	SO ₂ (80 μg /m3)	80	8.52	8.45	8.15	6.49	7.62	8.61	7.58	7.36	8.47	7.78	9.82	10.67	8.29
	NO _X (80μg /m3)	80	16.84	17.67	19.72	16.16	14.82	18.17	14.63	13.17	14.45	13.48	15.34	17.51	16.00
	CO (2 mg/m3)	2	0.78	0.66	0.53	0.52	0.42	0.52	0.53	0.57	0.47	0.54	0.36	0.42	0.53
A9 (Roof of	RPM (µg / m3)														
Panchpatmali	PM 2.5(60µg / m3)	60	39.87	35.51	35.41	25.5	24.12	27.83	29.4	30.65	34.21	39.21	34.51	34.62	32.57
Bhavan)	PM10(100µg / m3)	100	60.74	57.05	57.54	45.72	36.91	52.95	52.16	63.51	67.13	67.53	56.34	56.74	56.19
	NRPM (µg/m3)		65.56	62.26	61.17	49.61	40.32	55.78	57.69	96.63	76.26				63.15
	SPM(µg/m3)		126.3	119.3	118.7	95.33	77.23	108.7	109.85	133.14	143.39	138.11	116.75	118.22	117.09
	SO ₂ (80 µg/m3)	80	9.43	8.52	9.41	7.07	7.38	9.45	8.31	9.42	10.82	9.68	10.25	13.59	9.44
	NO _X (80μg/m3)	80	18.32	16.86	20.65	19.07	19.65	19.48	16.54	19.28	20.21	16.12	19.72	21.35	18.94
	CO (2 mg/m3)	2	0.8	0.59	0.74	0.73	0.41	0.68	0.73	0.79	0.64	0.71	0.44	0.59	0.65
A10 (Near SMCP	-														
North Block)	PM 2.5(60µg / m3)	60	37.64	36.27	28.23	18.84	17.41	29.17	22.35	27.54	28.68	37.18	34.51	32.71	29.21
	PM10(100µg / m3)	100	58.45	58.19	49.68	33.37	29.56	45.17	45.97	57.45	58.39	62.41	48.92	52.91	50.04
	NRPM (µg/m3)		63.68	60.51	52.52	37.32	32.76	47.16	49.41	62.89	62.17	68.43	52.62		54.11
	SPM(µg/m3)		122.1	118.7	102.2	70.69	62.32	92.33	95.38	120.34	120.56		101.54	112.72	104.15
	SO ₂ (80 µg/m3)	80	8.71	7.43	8.53	6.04	4.53	7.24	7.62	8.91	9.73	8.26	9.58	11.71	8.19
	NO _X (80μg/m3)	80	17.5	14.55	19.88	18.61	12.43	15.71	14.82	14.66	17.58	14.33	14.96	19.18	16.18
	CO (2 mg/m3)	2	0.64	0.58	0.62	0.32	0.36	0.47	0.45	0.54	0.46	0.52	0.4	0.41	0.48

SANJAYA KUMAR PATNAIK

SANJAYA KUMAR PATNAIK

General Manager(Env.)

General Manager(Env.)

Bauxite Mine

Panchpatmali Bauxite Mine

ANNEXURE-II FLOW RATES (SI 25) OF SPRINGS AROUND PANCHPATMALI CENTRAL & NORTH BLOCK BAUXITE MINE (2022-23)

SL.		T														-		
NO	-	G-1	G-2	G-3	G-4	0.5	0.6	107		pling Stati	-							
NO	Parameters	Litiguda	Jholaguda	Bhitara	Barigur	G-5	G-6	G-7	G-8	G-9	G-10	G-11	G-12	G-13	G-14	G-15	G-16	G-
		rangua	anotaguda	Bhejaput	barigur ha	Kapsiput	Litaputta	Murdagu	Gaurha; uda	Tengulig urha	Kakirgu ma	Tentulipa dar	Keler	Kusumag	Kirajhola	Rangapani	Pansaputa	Balip
	1 Temp (°C)	30°C	30°C	30°C	30°C	29°C	30°C	29°C	29°C	29°C	29°C	30°C	30°C	30°C	30°C	20°C	30°C	29°
	2 pH Value	6.9	6.9	7	7	7	7	7	7	6.9	6.9	6.9	7	7	7	7	7	7
	Dissolve Oxygen, mg/l	3.8	4	3.7	4.1	4	3.8	3.9	4	3,8	3.9	4	4	4	4	4.1	3.8	3.5
	Total Dissolved Solids, mg/l	40	45	34	41	40	41	33	41	80	43	40	32	77	44	34	45	41
	Total Hardness, (as CaCO ₃), mg/l	38	44	42	36	28	26	22	30	68	42	32	25	68	35	25	. 48	38
	Suspended solids mg/l	18	16	18	18	16	15	14	15	14	20	16	16	15	18	15	10	18
•	8.0.0 mg/l 3 days at 27°C	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
	Nitrate (as NO3), mg/l	4.5	3.9	4.8	3.8	4.9	4.6	4.7	3.2	2.8	2.8	4.6	4.5	3.2	3	2.5	2.8	3
	Chloride as CI – mg/l	4	6	22	36	34	30	32	8	18	6	12	8	6	4	10	9	7
. 1	S04), mg/l	18	16	18	18	16	15	14	15	<1.0	2	3	1	<1.0	<1.0	<1.0	<1.0	1
1	mg/l	12	14	10	14	10	8	4	6	22	16	10	9	18	10	9	11	10
12	Mg), mg/l	1.9	1.9	4.13	0.243	0.97	1.45	2.9	3.6	2.9	0.486	1.9	0.607	5.8	2.43	0.607	4.86	3.16
13	Turbidity,(N.T.U.)	8.5	4.6	7.9	6.2	5	4.3	3.9	4.6	4.2	4.8	4.2	4.3	4.4	4.5	4	3.2	3.8
14	Fluoride as F, mg/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	40.1
15	Phenotic Compounds, (as C _s H _s OH) ,mg/l	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00
16	mg/I	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
17	Mercury (as Hg), mg/l	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00
18	Lead (as Pb), mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01 <	0.01	0.01	<0.01
_	Cadmium (as Cd), mg/l	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	0.003	<0.003 <	0.003	0.003	0.003	<0.003
20	Chromium (as Cr ^{-t}), mg/l	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
2.11	Copper (as Cu), mg/l	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
22	Zinc (as Zn) mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
	Iron (as Fe), mg/l	0.86	0.43	0.36	0.25	0.55	0.76	0.73	0.84	0.36	0.45	0.56	0.64	0.92	0.88	0.76	0.86	0.76
24	Total Alkalinity (as CaCO ₃), mg/l	30	40	68	70	65	68	60	60	54	58	52	69	68	78	65	78	72
	STREAM FLOW RATE (m ¹ /sec)	3.597	1.152	0.551	0.873	1.217	0.916	1.6	1.496	0.609	1.011	0.34	.065	0.588	0.722	0.809	0.562	0.284

SANJAYA KUMAR PATNAIK General Manager(Env.) Panchpatmali Bauxite Mine NALCO, Damanjodi-763008

Stream water Quality Analysis with stream flow rate August 2022

SL.									Sampl	ing Station	n Code							
NO	Parameters	G-1	G-2	G-3	G-4	G-5	G-6	G-7	G-8	G-9	G-10	G-11	G-12	G-13	G-14	G-15	G-16	G-17
		Litigoda	Jholaguda	Bhitara I Bhejaput	Barigorha	Kapsiput	Litaputta	Murdagurh (Gaurhagod a	Tenguligur ha	Kakirgom a	Tentulipad ar	Keler	Kusumagur ha	Kirajhola	Rangapani	Pansaputa	Balipeta
1	Temp (°C)	28°C	28°C	28°C	30°C	30°C	30°C	30°C	28°C	28°C	28°C	29°C	28°C	29°C	20°C	<u>36°C</u>	30°C	28
2	pH Value	7	7	7	7	6.8	6.8	7	7	7	7	7	6.8	6.8	6.8	7	7	
3	Dissolve Oxygen, mg/l	4.1	3.9	3.9	4	4.2	4.1	4	4.2	4.2	4	3.9	4,4	4.2	4	4.2	4.1	
4	Total Dissolved Solids, mg/l	75	36	27	37.5	58	36	37	105	105	30	67	31	58	29	29	26	
5	Total Hardness, (as CaCO ₂), mg/l	40	20	24	210	28	16	24	52	52	20	44	20	20	24	24	20	
6	Suspended solids mg/l	21	17	13	15	16	14	25	23	23	20	21	18	19	24	23	20	
7	B.O.D mg/l 3 days at 27°C	< 3.0	< 3.0	< 3.0	<3.0	< 3.0	< 3.0	< 3.0	< 3,0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	<
8	Nitrate (as NO3), mg/l	4.8	5.2	4.3	4.4	8.6	7.9	4.3	5.6	5.6	6.8	6.7	5.5	6.8	4.9	5.8	6,4	
9	mg/i	4	4	4	120	4	4	4	2	2	3	4	3	2	2	6	4	
10	SO4), mg/l	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	<1.0	3	3	<1.0	3	<1.0	<1.0	<1.0	<1.0	<0.1	
11	mg/l	11	6	5	16	8	6	6	19	19	6	18	3	6	6	5	3	
12	Magnesium (as Mg), mg/l	3	0.972	3	42	2	<0.243		0.972		-		3	0.972		3	3	
13	Turbidity,(N.T.U.)	10.5	110	90.4	75	65	55	56	40	40	42	38	40	45	48	30	38	
14	Fluoride as F , mg/l	<0.1	<0.1	<0.1	<0.1	40.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	
1	Phenolic 5 Compounds, (as C ₄ H ₆ OH) ,mg/l	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	2 < 0.002	2 < 0.002	< 0.002	< 0.002	< 0.002	2 < 0.002	2 < 0.002	(
1	Arsenic (as As), mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0	< 0.0	1 < 0.01	< 0.01	< 0.0	< 0.01	< 0.0	1 <0.0	(
1	mg/l	< 0.001	< 0.001	< 0.001	< 0.00	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00	1 <0.00	1 < 0.001	<0.00	< 0.00	1 < 0.00	< 0.00	< 0.00	(
1	mgil	< 0.01	< 0.01	< 0.01	< 0.0	< 0.01	< 0.0	< 0.01	< 0.0	< 0.0	1 < 0.0	1 < 0.01	< 0.0	< 0.0	1 <0.0	1 < 0.0	1 < 0.0	1 4
1	Cadmium (as Cd), mg/l	< 0.003	< 0.003	< 0.00	< 0.00	3 < 0.003	< 0.00	< 0.003	< 0.00	< 0.00	3 < 0.00	3 < 0.000	< 0.00	< 0.00	3 < 0.00	3 < 0.00	3 < 0.00	
2	Chromium (as Cr*8), mg/l	< 0.05	< 0.05	< 0.0	< 0.0	5 < 0.05	< 0.0	< 0.0	< 0.0	< 0.0	5 < 0.0	5 < 0.0	< 0.0	-	-		-	-
2	Copper (as Cu)	< 0.04	< 0.02	< 0.0	2 < 0.0	2 < 0.02	< 0.0	< 0.00	< 0.0	< 0.0	4 < 0.0	2 < 0.0	< 0.0	2 < 0.0	2 < 0.0			-
2	2 Zinc (as Zn) mg/	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0	1 < 0.0	< 0.0	< 0.0	1 < 0.0		-		\vdash
2	3 Iron (as Fe), mg/		0.662	0.55	3 0.86	2 1.07	0.46	2 0.66	8 0.96	7 0.96	0.43	0.7	6 0.55	6 0.82	9 0.67	2 0.96	0.80	5
2	Total Alkalinit (as CaCO ₁), mg/l	46	40	4	2 20	0 2	4 2	2 4	8 4	0 4	4	12 4	0 4	8 3	2	4 4	12 4	ó
7	STREAM FLOW RATE (m ³ /sec)	5.876	1.504	0.68	9 1.22	2 1.45	1.02	2 1.94	1.78	0.83	1.42	0.45	7 1.16	O.T.	4 0.94	3 1.02	0.72	19

SANJAYAKUMAR PATNAIK

NALCO, Darranjodi Tabarat

SANJAYAKUMAR PATNAIK

SANJAYAKUMAR PATNAI

					Juci	III WOLLI	Quality A	naiyəiə w	iui su ca	III IIVW IO	re lanae	ilibel Zuz	.2					
SL.									San	pling Stati	ion Code							-
NO	Parameters	G-1	G-2	G-3	G-4	G-5	G-6	G-7	G-8	G-9	G-10	G-11	G-12	G-13	G-14	G-15	G-16	G-1
		Litigoda	Iholagoda	Bhitara Bhejaput	Barigurh	a Kapsipu	t Litaputta	Murdagur	h Gaurhagu a	d Tenguligu ha	Kakirgur 2	n Tentulipa ar	id Keler	Kusumagi	or Kirajhola	Rangapani	Pansaputa	Balip
	Temp (°C)	18°C	18°C	18°C	20°C	20°C	18°C	18°C	18°C	18°C	18°C	20°C	20°C	20°C	20°C	18°C	i8°C	20°0
	pH Value	6.8	6.8	6.8	6.8	6.8	6.8	6.9	6.9	6.8	6.8	6.8	6.9	6.8	6.8	6.9	6.8	6.8
3	Dissolve Oxygen, mg/l	3.9	3.8	4	4.2	3.9	4.1	4	3.9	4	3.8	4.2	3.8	3.9	4.1	4	4.1	4
4	Total Dissolved Solids, mg/l	22	25	24	23	18	23	23	23	24	30	25	26	25	37	27	24	24
5	Total Hardness, (as CaCO ₃), mg/l	16	18	17	18	10	18	18	20	18	22	20	22	22	26	22	18	20
6	Suspended solids mg/l	6.5	6.6	6.2	6.3	6.1	6.4	6.2	6.1	6.2	6.2	6.1	6.4	6.3	6.2	6.1	6.1	6.3
7	B.O.D mg/l 3 days at 27°C	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
8	Nitrate (as NO3), mg/l	4.2	4	5.6	7.2	7.4	5.8	6.2	5.6	4.9	7.6	3.8	4.8	6.6	2.2	4.6	-3.6	3.8
9	Chloride as CI – mg/l	2	2	2	2	2	2	2	2	3	2	3	4	6	2	2	4	3
10	Sulphate (as SO4), mg/l	2	3	4	2	<1.0	3	2	1	<1.0	8	5	4	6	4	<0.01	<0.01	<0.01
11	Calcium (as Ca), mg/l	4.8	3	4.8	5.6	3.2	4	5.2	5.2	4	4.8	3.6	5.5	4	3	3.8	5.6	4.5
	Magnesium (as Mg), mg/l	0.972	2.5	1.2	0.972	0.486	1.94	1.21	1.7	2.94	2.43	1.99	2	2.916	1.458	3.03	1.944	2.12
13	Turbidity,(N.T.U.)	10	12	18	10	10	15	18	25	26	15	42	38	35	40	30	25	28
141	Fluoride as F , mg/l	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
15	Phenolic Compounds, (as C _e H _s OH) ,mg/l	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
16	Arsenic (as As), ng/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
171	Hercury (as Hg), ng/l	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
181	.ead (as Pb), ng/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
191	Cadmium (as Cd), mg/l	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
20	thromium (as ir ⁻⁸), mg/l	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
	opper (as Cu), ng/l	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03

<0.01

< 0.05

12

3.701

< 0.01

0.06

14

1.024

< 0.01

0.08

13

0.52

< 0.01

0.136

14

0.802

< 0.01

0.262

14

1.143

< 0.01

0.0.92

0.777

< 0.01

0.116

< 0.01

0.243

18

1,479

< 0.01

0.243

18

0.564

<0.01

0.462

16

0.963

<0.01

0.105

14

0.315

<0.01

0.226

14

1.065

< 0.01

0.198

16

0.588

< 0.01

0.232

26

0.646

< 0.01

0.118

30

0.799

<0.01

0.38

0.535

< 0.01

0.462

19

0.266

22 Zinc (as Zn) mg/l

23 Iron (as Fe), mg/l

Total Alkalinity (as CaCO₁), mg/l

25 RATE (m³/sec)

Stream water Quality Analysis with stream flow rate January 2023

IL.										ing Statio							634	A 1 =
NO	Parameters	G-1	G-2	G-3	G-4	G-5	G-6	G-7	G-8	G-9	G-10	G-11	G-12	G-13	G-14	G-15	G-16	G-17
		Litigoda	Jholaguda	Bhitara Bhejaput	Bangorha	Kapsiput	Litaputta	Murdagurh a	Gaurhagud a	Tengdigur ha	Kakirgum a	Tentulipad ar	Keler	Kusumagur ha	Kirajhola	Rangapani	Pansaputa	Balipeta
1	Temp (°C)	20.1°C	20.6°C	20.6°C	21.2°C	21.6°C	20.5°C	20.7°C	21.5°C	21.6°C	<u>21.7°C</u>	20.5°C	20.6°C	21.5°C	21.8°C	21.6°C	20.3°C	20.9°C
1	pH Value	7.1	7.2	7	7.3	7.2	7	7.1	7.2	7.3	7.4	7	7.2	7.1	7	7.3	7.4	7.2
	Dissolve Oxygen, mg/l	3.9	3.8	4	3.7	4.1	4.2	4	3.8	3.7	4	3.9	4.1	3.8	3.8	3.8	3.9	4
	Total Dissolved Solids, mg/l	14	14	31	13	19	15	63	23	42	27	9	70	28	11	175	33	15
	Total Hardness, (as CaCO _s), mg/l	28	28	20	25	20	22	64	22	44	20	8	64	22	8	100	28	18
	Suspended solids mg/l	16	17	22	12	30	18	60	- 28	36	25	15	64	26	12	24	30	20
	8.0.D mg/l 3 days at 27°C	< 3.0	<3.0	<3.0	<3.0	⊲.0	<3.0	4.0	< 3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	< 3.0	<3.0	<3.0
	Nitrate (as NO3), mg/l	2.2	1.6	1.8	3.2	2.9	2.4	4.2	2.2	1.6	2.9	3.2	2.2	1.5	4.2	4.4	2.9	2.6
	Chloride as CI - mg/l	4	3	4	2	4	6	4	6	8	7	6	8	5	5	64	4	4
1	Sulphate (as SO4), mg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	6	<1.0	<1.0	25	2	<1.0
1	Calcium (as Ca), mg/l -	4.8	2	2.5	3	4.9	4	16	2.9	9.6	1.6	1.4	22.4	1.6	1.2	2.7	4	3
	Magnesium (as Mg), mg/l	4	1.6	1.8	1.2	1.9	2.9	6	<0.243	5	<0.243	<0.243	1.9	<0.243	<0.243	8	4.3	2.5
	3 Turbidity,(N.T.U.)	10	13	7	20	32	7	<1.0	9	3.2	33	2.5	3.8	45	1.8	<1.0	V1.0	23
	Fluoride as F , mg/l	<u><1.0</u>	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<u><1.0</u>	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<u><1.0</u>	<1.0	<1.0
	Phenolic Compounds, (as C ₄ H ₆ OH) ,mg/l	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.0
1000	Arsenic (as As), mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.
	Mercury (as Hg mg/l	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0,001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.0
	Lead (as Pb mg/l	\$ 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.
	Cadmium (a Cd), mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	-	< 0.01	< 0.01	<0.
	20 Chromium (a Cr ⁻⁴), mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	+-	+		< 0.05	< 0.
	Copper (as Cu mg/l	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	-	< 0.04	-			< 0.04	< 0.
	22 Zinc (as Zn) mg	A < 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	+	-	< 0.01		+		< 0.01	<0.
	23 Iron (as Fe), mg	0.216	0.562	0.288	0.167	0.059	0.862	0.542	0.116	0.205	0.09	<0.05	<0.05	<0.05	<0.05	0.643	0.243	0.2
	Total Alkalini (as CaCO ₃), mg	54	63	69	68	59	54	53	64	68	56	71	65	66	69	70	69	6
	25 RATE (m ¹ /sec)	W 3.77	1.169	0.575	0.908	1.209	0.754	1.449	1,531	0.69	1.011	0.364	1.065	0.588	RPAT		0.546	0.

SANJAYAKUMAR PAINNIK SANJAYAKUMAR PAINNIK Seneral Manager(Env.) General Manager(Env.) Panchpatmali Bauxite Mine Panchpatmali Bauxite Mine Panchpatmali Damanjodi-763008

ANNEXURE-III GROUND WATER QUALITY ANALYSIS AROUND PANCHPATMALI CENTRAL & NORTH BLOCK BAUXITE MINE (2022-23)

SANJAYA KUMAR PATNAIK General Manager(Env.) General Manager(Env.) Panchpatmali Bauxite Mine Panchpatmali Bauxite Mine Panchpatmali Damanjodi-763008

		· or reprin	2022									*				1000
sts Pern	nissible	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	GW-7	GW-8	GW-9	GW-10	GW-11	GW-12	GW-13	GW-14	GW-1
Li	mits	Metingi Village	Chhatamb a Village	Panasaput	Jhariapad ar	Tentulipad ar	Ichhapur	Mundagad ati	Bijaghati Village	Putraghati Village	Chararha Village	Kapsiput Village	Jambagur ha Village	Shriguda Village	Kakirigum a Village	Sorisha
6.5	-8.5	6.8	6.9	6.9	6.8	6.8	6.9	6.9	6.8	6.8	6.8	5.0				Village
	-	3.5	3.2	3.8	4	3.9	3.7	3.2	4	4.1	3.6	6.8	6.9	6.9	6.8	6.9
	000	160	60	69	54	40	55	321	93	67	114	3.5	3.8	3.5	3.9	3.9
	00	100	60	48	48	42	44	140	50	88	72	40	113	56 36	33 40	53
ty (as	00	75	16	20	16	20	24	25	28	64	18	16	15	12	20	36
	30	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0				
	15	1.6	2.2	0.98	3.2	1.2	2.5	2	4.6	2.9	2.4	1.6	<3.0	<3.0	<3.0	<3.0
	000	32	8	10	10	15	16	18	20	20	22	8	1.8	12	8	2.3
04 4	00	30	4	8	4	2	5	30	15	4	10	2	25	3	3	4
	00	29	22	16	18	16	11	32	13	20	19	15	18	10	8	11
	00	6.8	1.2	1.9	0.729	0.486	3.88	14.6	4.25	9.2	5.8	0.607	9.7	2.67	4.9	4
) 1	_	1.6	2	12	2	4.8	3.5	2.8	12	10	4.8	3	3.2	2.8	3	-
	.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	5.4 <1.0
, -,	02	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00
ng/l) 0.	01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
(mg/l) 0.0		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.05
1) 0.	05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
0.0	01	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.00
0.0)5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
ng/l) 1.		<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	-0.04		12012020
1	5	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.04	<0.04		<0.04	<0.04	<0.04
) 1		0.269	0.135	0.226	0.437	0.296	0.362	0.462	0.254	0.338	0.305		<0.01	<0.01	<0.01	<0.01
0 ^c -		28°C	28°C	29°C	29°C	29°C	28°C	28°C	28°C	29°C	29°C	0.362 28°C	0.229	0.288	0.306	0.397
ND 100		Absent	Absent	Absent /	Absent	Absent			Absent				28°C Absent	29°C Absent	298°C Absent	29°C Absent
			L				1.031	Loseit Violent Violent	Moseur Moseur Moseur	Absent Absent Absent	Absent Absent Absent /	Absent Absent Absent Absent .	Absent Absent Absent Absent Absent	Absent Absent Absent Absent Absent Absent .	Absent Ab	

			For Augus	st 2022													
SI.	Name of Tests	Permissible	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	GW-7	GW-8	GW-9	GW-10	GW-11	GW-12	GW-13	GW-14	GW-1
No	. 1	Limits	Metingi Village	Chhatamb a Village	Panasaput	Jhariapad ar .	Tentulipad ar	Ichhapur	Mundagad ati	Bijaghati Village	Putraghati Willage	Chararha Village	Kapsiput Village	Jambagur ha Village	Shriguda Village	Kakirigum a Village	Sorisha padar Village
1	pH at 30°C	6.5-8.5	6.6	6.8	6.9	6.7	6.8	6.9	6.6	6.7	6.8	6.8	6.73	6.7	6.6	6.8	6.8
2	D.O. (mg/l)	-	3.8	3.9	4	4	4.2	4.1	3.8	3.8	3.7	3.5	3.5	3.6	3.9	4	3.9
3	T.D.S (mg/l)	2000	232	66	76	49	98	327	389	107	96	461	361	66	100.9	64	75
4	Total Hardness. as CaCo ₃	600	106	44	48	20	80	216	132	48	64	216	132	40	36	32	28
5	Total Alkalinity (as CaCo ₃) (mg/l)	600	52	52	40	2-	28	164	32	40	72	92	64	8	4	4	12
6	B.O.D.	30	<0.03	<0.03	< 0.0 3	<0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	< 0.0 3	<0.03	<0.03	<0.03	<0.0
7	Nitrate as No ₃ (mg/l)	45	2.8	2.6	3.4	3.2	3.3	3.3	2.5	2.3	2.2	2.8	2.9	2.6	1.6	2.2	2.3
8	Chlorides as Cl (mg/l)	1000	44	4	8	8	20	36	100	20	12	108	32	4	8	16	8
9	Sulphate as SO ₄ (mg/l)	400	<1.0	2	4	1	8	10	75	10	2	10.8	90	15	3	2	10
10	Calcium as Ca (mg/l)	200	27.2	11.2	11.2	8	17.6	59	38	11	16	53	32	9	8	9.6	8
11	Magnesium as Mg (mg/l)	100	12	3.88	4.86	<0.243	8.7	16.5	8.7	4.9	5.8	20.4	12.6	3.8	6.8	1.944	1.9
12	Turbidity (NTU)	10	4.2	4.6	4.5	5.8	3.5	72	65	96	8.8	6.5	4.6	5.8	10.8	12.6	25
13	Fluoride as F (mg/l)	1.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.
14	Phenlic compounds as C ₆ H ₅ OH (mg/l)	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0
15	Arsenic as As (mg/l)	0.01	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.
16	Mercury as Hg (mg/l)	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0
17	Lead as Pb (mg/l)	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.
18	Cadmium as Cd (mg/l)	0.01	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.0>
19	Chromium Cr ⁺⁶ (mg/l)	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.
20	Copper as Cu (mg/l)	1.5	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.04	<0.04	<0.04	< 0.04	<0.04	<0.
21	Zinc as Zn (mg/l)	15	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.
22	Iron as Fe (mg/l)	1	0.323	0.306	0.225	0.116	0.106	0.152	0.246	0.288	0.303	0.298	0.304	0.306	0.304	0.225	0.3
23	Temperature in 0 ^C	74	28°C	28°C	26°C	26°C	28°C	27°C	28°C	27°C	26°C	25°C	27°C	26°C	26°C	26°C	28
24	Coliform (MPN)	ND in 100ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

Norm as per IS 10500:2012

SI.	Name of Tests	Permissible	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	GW-7	GW-8	GW-9	GW-10	GW-11	GW-12	GW-13	GW-14	GW-
NANAKI NAKI		Limits	Metingi Village	Chhatamb a Village	Panasaput	Jhariapad ar	Tentulipad ar	Ichhapur	Mundagad	Bijaghati Village	Putraghati Village	Chararha Village	Kapsiput Village	Jambagur ha Village	Shriguda	Kakirigum a Village	
SIG	pH at 30°C	6.5-8.5	6.9	6.9	6.8	6.8	6.9	6.9	6.8	6.9	6.9	6.8	6.8				Village
夏2元	D.O. (mg/l)	(2)	4.5	4.3	4.5	4.4	4.2	4.1	4.1	4.2	4.6	4.4		6.9	6.9	6.9	6.8
er er	T.D.S (mg/l)	2000	175	69	65	317	96	124	316	84	92	120	132	4.5 63	4.2	4.3	4.4
NA NA	Total Hardness. as CaCo ₃	600	92	56	50	126	52	84	80	32	68	78	74	44	26	169 72	166
5	Total Alkalinity (as CaCo3) (mg/l)	600	36	48	42	68	40	64	78	30	90	42	24	50	22	46	22
6	B.O.D.	30	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	2.0			
7	Nitrate as No ₃ (mg/l)	45	1.2	1.6	1	0.9	0.86	0/42	1,1	1.08	1.2	1.5	1.4	<3.0	<3.0	<3.0	<3.0
8	Chlorides as Cl (mg/l)	1000	36	2	10	82	6	18	100	10	2	16	24	1.3	0.8	1.1	2.8
9	Sulphate as SO ₄ (mg/l)	400	10	3	2	20	3	5	12	<1.0	<1.0	10.2	8.6	<1.0	2	8	9
10	Calcium as Ca (mg/l)	200	22	11	16	30	11	22	18	10	17.6	18	17.6	11	5.6	20	20.8
11	Magnesium as Mg (mg/l)	100	8.7	6.8	2.4	12.2	5.8	6.8	8.3	1.5	5.8	7.8	7.8	7.3	2.9	5.3	6.3
12	Turbidity (NTU)	10	1	12	11	<1.0	1.3	1.2	3.5	4.2	1,1	1.3	1.2	1.2	1.3	2.0	
13	Fluoride as F (mg/l)	1.5	0.09	0.06	0.05	0.243	0.161	0.082	0.08	0.112	0.06	0.07	0.122	0.226	0.227	2.8	1.2
14	Phenlic compounds as C ₆ H ₅ OH (mg/l)	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.00
15	Arsenic as As (mg/l)	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
16	Mercury as Hg (mg/l)	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.01	<0.01	<0.01
17	Lead as Pb (mg/l)	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	-0.04
18	Cadmium as Cd (mg/l)	0.01	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.01
	Chromium Cr ⁺⁶ (mg/l)	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
20	Copper as Cu (mg/l)	1.5	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	-0.04	.0.51					
21	Zinc as Zn (mg/l)	15	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
22	Iron as Fe (mg/l)	1	<0.05	<0.05	<0.05	<0.05	0.16	0.13	<0.05	<0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
23	Temperature in 0 ^C	-	18°C	18°C	18°C	18°C	18°C	18°C	20°C	<0.05 20°C	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
24	Coliform (MPN)	ND in /	Absent								20°C Absent	20°C	20°C Absent	20°C Absent		20°C Absent	20°C Absent

			For Jan 20	123													
SI.	Name of Tests	Permissible	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	GW-7	GW-8	GW-9	GW-10	GW-11	GW-12	GW-13	GW-14	GW-15
No		Limits	Metingi Village	Chhatamb a Village	Panasaput	Jhariapad ar	Tentulipad ar	Ichhapur	Mundagad ati	Bijaghati Village	Putraghati Village	Chararha Village	Kapsiput Village		Shriguda Village	Kakirigum a Village	Sorisha padar Village
1	pH at 30°C	6.5-8.5	6.6	6.8	6.7	6.8	6.6	6.8	6.7	6.8	6.8	6.8	6.6	6.8	6.7	6.8	6.8
2	D.O. (mg/l)	7 21	3.2	3.6	3.8	3.2	3.3	3.8	3.6	3.5	3.7	3.6	3.2	3.4	3.8	3.9	3.7
3	T.D.S (mg/l)	2000	179	58	15	8	140	201	87	14	136	35	21	9	31	39	39
4	Total Hardness. as CaCo ₃	600	104	16	16	12	140	200	76	4	84	24	24	16	28	32	32
5	Total Alkalinity (as CaCo ₃) (mg/l)	600	20	8	12	8	116	160	64	8	28	12	20	12	16	36	16
6	B.O.D.	30	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
7	Nitrate as No ₃ (mg/l)	45	4.6	3.8	4.2	4	3.2	2.9	2.6	2.2	2	2.5	2	2.8	1.8	2.9	3
8	Chlorides as Cl (mg/l)	1000	68	4	4	4	4	8	36	4	4	4	4	4	4	4	4
9	Sulphate as SO ₄ (mg/l)	400	30	6	<1.0	<1.0	6	12	2	<1.0	18	2	<1.0	<1.0	3	2	4
10	Calcium as Ca (mg/l)	200	32	6.4	6.4	6.4	33.6	38.4	22	1.6	18	3.2	8	6	11	8	5
11	Magnesium as Mg (mg/l)	100	5.8	<0.243	<0.243	<0.243	13.6	25.3	5	<0.243	9.7	3.8	9.8	<0.243	<0.243	2.9 <1.0	4.8
12	Turbidity (NTU)	10	<1.0	1.3	<1.0	<1.0	<1.0	7.8	1	<1.0	4.2	1.3	<1.0	<1.0	<1.0	<1.0	<1.
13	Fluoride as F (mg/l)	1.5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1,0	<1.0	<1.0	<1.0	<1.0	V1.0		+	_
14	Phenlic compounds as C ₆ H ₅ OH (mg/l)	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.0
15	Arsenic as As (mg/l)	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			1	
16	Mercury as Hg (mg/l)	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.0
17	Lead as Pb (mg/l)	0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	1		1
18	Cadmium as Cd (mg/l)	0.01	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.0
19	Chromium Cr ⁺⁶ (mg/l)	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.0
20	Copper as Cu (mg/l)	1.5	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	_	< 0.
21	Zinc as Zn (mg/l)	15	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.6
22	Iron as Fe (mg/l)	1	0.762	0.286	<0.5	<0.5	0.527	0.203	0.362	0.09	0.116	0.102	0.116	<0.05	0.462	0.386	19.8
23	Temperature in 0 ^c	-	20.2°C	20.6 <u>°C</u>	21.5°C	19.6 <u>°C</u>	20.5°C	20.6 <u>°C</u>	19.8 °C	20.8 <u>°C</u>	20.8 °C	21.1 °C Absent	20.6 °C Absent	20.8 °C Absent	20.2°C Absent	19.9°C Absent	19.8 Absent
24	Coliform (MPN)	ND in 100ml	Absent	Absent Ceneral Notes as	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Mosent	Abselit	Lunsein	Fiesen	

Normal Bauxite Normali Bauxite

ANNEXURE-IV

STATUS OF COMPLIANCE OF MEASURES TO BE TAKEN UP BY NALCO WITHIN THE PROJECT AREA OF PANCHPATMALI BAUXITE MINE (CENTRAL & NORTH BLOCK ML) AS PER APPROVED WILD LIFE MANAGEMENT PLAN

Sl.No.	Para ref.	Item of Work	Status as on 30.9.2022
1	3. b) i) 1.	Soil and moisture conservation in the ML area	Top soil excavated is used in concurrer reclamation of mined out area and is 100% utilised. All the rainfall in mined out are percolates into the ground without being discharged outside due to presence of in-sit barrier all around the mine. Besides rick growth of plantation and grass in the mined out area helps the soil to retain optimum moistures.
· 2	3. b) i) 2.	Grass seeding in hill slopes one year prior to plantation	Every year grass turfing with local grass i done in slopes in ML area. Grass turfing carried out during 2022-23 is 7000 sqr.mtr.
3	3. b) i) 3.	Water harvesting structure in the Central Location of the lease where normally stray cattle congregate 40 m length x 30 m width x 3 m depth at the central point.	Three Nos of water harvesting structures do exist over Panchpatmali Bauxite Mine to take care of the need of stray cattle and othe wildlife.
4	3. b) i) 4.	Fire line inside already reclaimed areas prior to commencement of the season (January to June) 20 km	Every year lemon grass @75000 sq.mtr appx is being removed inside the reclaimed area at total area clearance to prevent spread of fire.
5	3.b) i) 5.	Watch and ward (10 nos) to prevent spread of fire will be looked after by NALCO	Watch and ward @14 nos per day are being deployed to prevent spread of fire.
6	3. b) i) 6.	Signage depicting messages to workers to protect the planted species / their vernacular name and usages and their medicinal value.	Signage board on plantation & Environmental issues have been provided.
7	3 b) i) 7	Awareness campaign amongst the workers regarding the ecological / ethnic values of forest	Every year awareness campaign is being organised to spread awareness among employees regarding ecological / ethnic values of forest through World Environment Day, Vana Mahotsav Week, MEMC Week, etc.
8	3. b)i) 8.	Solar Fencing around Red Mud Pond over 3.0 Kms.	The red mud pond is located beyond the buffer zone of Panchpatmali Bauxite Mine. Further no elephant habitat exists in the core or buffer zone of Panchpatmali Bauxite Mine.

(Rasheed Waris)
Group General Manager(Mines)

ANNEXURE-V AMBIENT NOISE LEVEL MEASUREMENT IN AND AROUND PANCHPATMALI CENTRAL & NORTH BLOCK BAUXITE MINE FOR 2022-23

SI.	Monitoring station code & its	Date	Noise dB	level (A)	Date	Noise dB	level (A)	Date	14.5	e level (A)	Date	Noise dB(2000
	direction		Day	Night		Day	Night		Day	Night		Day	Night
1	Baiguda Village- SW	21.04.22	52.6		22.08.2022	48.9	34.8	19.11.2022	51.2	30.1	17.01.2023	49.2	31.5
2	Bitiarguda Village- W	21.04.22	50.8	32.5	22.08.2022	50.2	34.6	19.11.2022	53.4	35.2	17.01.2023	47.6	33.5
3	Goudgida Village- NW	21.04.22	53.6	34.6	22.08.2022	47.8	29.5	19.11.2022	47.1	39.5	17.01.2023	52.7	35.2
4	Kakriguma Village N	21.04.22	48.8	38.5	22.08.2022	46.9	33.9	19.11.2022	50.3	37.2	17.01.2023	48.8	38.1
5	Upper Meeting Village- NE	21.04.22	46.7	40.6	22.08.2022	50.2	36.7	19.11.2022	49.5	39.4	17.01.2023	48.2	36.5
6	Near Main Haul Road- E	21.04.22	50.2	42.5	22.08.2022	52.6	37.6	19.11.2022	52.1	38.2	17.01.2023	53.1	31.5
7	Near Crusser House- SE	21.04.22	50.6	36.5	22.08.2022	50.8	37.2	19.11.2022	45.2	38.1	17.01.2023	48.5	33.1
8	Near Hemm Main Building- SW	21.04.22	43.4	39.6	22.08.2022	53.6	36.8	19.11.2022	47.5	43.1	17.01.2023	47.7	35.6
9	Roof Of Panchpatmali Bhawan- S	21.04.22	53.3		22.08.2022	44.8	334	19.11.2022	51.6	33.1	17.01.2023	53.6	38.5
10	Near Smcp North Block-NE	21.04.22	46.6	36.5	22.08.2022	46.6	32.1	19.11.2022	53.2	38.4	17.01.2023	53.8	33.2

Norm			
Category o	of area/zone	Limits in dB(A) l	_eq
		Day time	Night time
(A) ·	Industrial area	75	70
(B)	Commercial area	65	55
(C)	Residential area	55	45
(D)	Silence zone	50	40

SANJAYA KUMAR PATNAIK
General Manager(Env.)
Panchpatmali Bauxite Mine
NALCO, Damanjodi-763008

ANNEXURE-VI WASTE WATER ANALYSIS AT PANCHPATMALI CENTRAL & NORTH BLOCK BAUXITE MINE (2022-23)

											(20	022	1	1	1													
SI.				1	I	1	T	WW1		1						_	_		V	/W2							A	verage
No.	Parameter Temperature (90)	HORM	-	2 May-2	_		-	2 Sep-22	-	_		2 Jan-23			-	-	2 Jun-2	2 Jul-2	2 Aug-2	2 Sep-22	Oct-21	Nov-	22 Dec-2	2 Jan-2	Feb-2	Mar-	3 WW1	W
Z	pH Value	5.5-9.0	7	28	6.8	15	30	28	22	20	20	21.8	28.3	28	30	28	28	15	30	28	22	20	20	21.6	28.6	28	24.280	24.
3	Dissolve Oxygen, mg/l	3.3-3.0	3.9	1.2	3.8	3.9	3.8	3.8	20	1	21	1	7	7	7	7	6.8	7	7	7	7	7	7	7.2	6.9	6.9	6.980	7.0
	Total Dissolved Solids.	-	3.3	1.4	3.0	3.3	3.0	3.0	3.9	3.8	3.4	3.5	6	3.5	3.8	1	3.7	3.8	3.7	3.89	3.8	3.7	3.8	3.3	6.8	3.6	3.500	3.4
4	mg/l		53	143	102	118	123	92	109	208	144	50	179	229	51	151	120	109	135	98	80.7	204	143	66	175	252	114.16	0 115
5	Total Hardness (as CaCO ₃), mg/l		30	88	68	72	52	60	52	68	106	24	152	84	14	72	68	64	52	44	48	62	110	20	144	84	62.000	55.
5	Suspended Solids mg/l	100	10	10	10	6	18	18	12	13	12	20	7	2	18	16	12	8	20	20	18	10	10	20	-	-		-
,	B.O.D mg/l 3 days at	30	3.0	3.0	3.0	<3.0	<3.0	18	24	15	17	<3.0	18	21	<3.0	<3.0	-	-	-	-	-	-		22	11	1	12.900	
	C.O.D mg/l		6	57	4	27	8	210	120	60	64	75	57	106	8	-	<3.0	3.0	-	15	18	10	12	<3.0	24	16	<3.0	<
1	Nitrate (as NO3), mg/l		2.5	2.8	4.8	9.5	7.6	8.6	4.6	1.5	5.5	4.8	500			60	6	81	7	90	88	45	56	60	65	82	63.100	50.
-	Chloride as CI – mg/I	-	20	56	8	16	12	10	32	46	17	20	4.5	4.5 128	2.8	18.1	6.6	5.8	8.2	7.8	3.8	1.8	6.8	4.5	5.6	8.6	5.220	6.6
	Sulphate (as SO4), mg/l		5	3	8	5	8	6	1	_	12.6	4	4	8.5	16	<1.0	16	12	32	12	12	54	17	16	16	132	23.700	24.
	Calcium (as Ca), mg/l		7.2	19.2	20.8	20.8	12.8	16	13	_	29.6	8	35	25.6	4	23.2	17.6	4	10	18	<1.0	22	13.7	3	4	8.8	7.760	10.
и	Magnesium (as Mg),		2.9	9.72	3.9	4.9	4.8	4.8	4.8	4.86	7.8	0.97	16	4.86	0.97	0.972	-	16	2.9	16	11.2	17	28.8	5	37	25.6	16.640	3.8
4	mg/l Fluoride as F , mg/l	2	1	<0.1	<0.1	<0.1	<0.1	0.73										1000	and a	0.97	4.8	4.86	9.2	1.94	13	4.86	4.545	3.0
L	Phenolic Compounds,	1	<0.0								<0.1	<0.1	0.42	< 0.1	1.2	<0.1	<0.1	<0.1	<0.1	0.77	<0.1	0.29	0.12	<0.1	<0.1	< 0.1	0.662	0.5
J.	(as C ₆ H ₅ OH) ,mg/l		01	<0.00	<0.0 02	<0.0 02	0.002	<0.00	<0.0	<0.00	<0.01	< 1.0	< 1.0	0.06	< 0.00	<0.00	<0.0 02	<0.0	0.002	<0.0	<0.0	<0.00	<0.01	< 1.0	< 1.0	0.09	<0.001	<0.0
1	Arsenic (as As), mg/l	0.2	<0.0	<0.05	<0.0	<0.0	0.01	<0.05	<0.0	<0.01	<0.2	0.01	< 0.2	< 0.01	<0.05	<0.05	<0.0	<0.0	<	<0.0	<0.0	<0.01	<0.2	<	< 0.2	<	<0.05	<0.
1	Mercury (as Hg), mg/l	0.01	7-27-1	<0.00	100	<0.0	<	<0.00	-	<0.00	0.01	<	<		<0.00	<0.00	-	<0.0	0.01	<0.0	<0.0	<0.00		0.01	<	0.01	<0.001	<0.0
ļ.	1/ 1/1 /		01	1	01		0.001	1	01	1	0.01	0.001	0.01	0.01	1	1	01	01	0.001	01	01	1	<0.01	0.00	0.01	0.01	-0.001	10.0
L	ead (as Pb), mg/l	0.1	<0.0	<0.01	<0.0	<0.0	0.01	<0.01	<0.0	<0.01	<0.1	< 4	< 0.1	۲ ۸۸۰	<0.01	<0.01	<0.0	<0.0	<	<0.0	<0.0	< 0.01	<0.1	1	< 0.1	<	<0.01	<0.
C	Cadmium (as Cd), mg/l	2	<0.0	<0.01	<0.0	<0.0	1	<0.01	znin l	<0.01	0.00	0.01	<	0.07	20.00		<0.0	1 <00	0.01	<0.0	1		<0.00	0.01	<	0.01		250
9	75		01	100	1		0.003		1	(0,01	3	0.01	.002	0.01	1	<0.01	1		0.003	1	1	< 0.01	3			0.01	<0.01	<0.0
	Chromium (as Cr*),	0.1	<0.0 5	<0.05	<0.0	<0.0	0.05	<0.05	<0.0	0.05	0.1	< <	0.1	<	< 0.05	<0.05	0.00	<0.0	19.000	100	<0.0	< 0.05	<0.1	<	01	<	<0.05	<0.0
_	opper (as Cu), mg/l	3	0.0			<0.0	7	-	17.		_	0.05	-	0.05			5		0.05	5	5	10.00	70.1	0.05	< 0.1	0.05		
	opper (as cu), mg/1	3	4	<0.04	1	A 101-0	0.04	< 0.04	<0.0	0.04 <	0.04	001	<	× .	<0.04	< 0.04	<0.0	<0.0		15 27	<0.0	0.04	< 0.04	<	<	<	< 0.04	<0.0
Z	inc (as Zn) mg/l	5	nn!	-0.04	₹0.0		/	204	<0.0			0.04 (0.04	0.04			<0.0		0.04	<0.0	4	-		0.04	_	0.04	10.04	30.0
	A STATE OF THE STA	0	1	VU.01	1	1	U.U1	<0.01	1	0.01 <	0.01	0.01	0.01	0.01	0.01	<0.01	1		0.01	1	1	0.01	< 0.01	0.01	0.01	0.01	<0.01	<0.0
-	on (as Fe), mg/l		-	_	_	_	0.96				.36	1 2	29 (.203	.058	<0.1	0.98			1.2 (1.56	0.38	-	0.65		0.01	0.629	0.82
0	il and grease	10	1	8.8	2.6	13	<0.1	2.5	(0.1	4.8 0	.96	<0.1	2	2.4	1.2	9	-	_		-	_	2.6		-	1.6		4.8089	4.19
1	/W1-treated water from	Cantee	n											٧	VW2-tr	eated	water fr	om H	EMM a	rea				немм	area			
	40																											
	Parameters are within p	ermissib	le nor	ms											NT. No	ot trace	ahla											

SANJAYA KUMAR PATNAIK

SANJAYA KUMAR PATNAIK

General Managertenv.)

General Managertenv.)

Panchnatmali Bauxite Mine

Panchnatmali Bauxite Mine