

NATIONAL ALUMINIUM COMPANY LIMITED (A Government of India Enterprise) PANCHPATMALI BAUXITE MINE Mines & Refinery Complex DAMANJODI-763008

Dist. KORAPUT (ODISHA) Ph-06853-268001, Fax-06853-268002/268003

Ref-NAL/MIN/CGM(Mines)/2025/ 91

Date: 29.10.2025

To,

The Deputy Director General of Forests (C), Ministry of Environment, Forest and Climate Change, Regional Office, A/3, Chandrasekaharpur, Bhubaneshwar-751023

Sub:- Submission of Six monthly compliance status report on Environmental Clearance conditions for the period 1st April 2025 to 30th September 2025 in respect of Panchpatmali Central & North Block Bauxite Mine, NALCO.

Ref- (1) Env. Clearance Letter No. J-11015/49/2008-1A.II(M), Dtd. 20-2-2009 from MoEF&CC, GOI.

Dear Madam/Sir,

Please find enclosed herewith the six monthly compliance reports against the condition of above referred Environmental Clearances for the period 1st April 2025 to 30th September 2025 in respect of Panchpatmali Central & North block Bauxite Mine, NALCO. This is for your kind information nd perusal please.

Thanking you,

Encl- As above

1 hm

Chief General Manager(Mines)
PURUSOTTAM MOHANTA

Chief General Manager (Mines)
Panchpatmali Bauxite Mines

-for kind information jodi-763008

Copy-

-Additional Secretery (IA)
Ministry of Environment & Forests & Climate Change
Govt of India, Indira Paryavaran Bhawan, Aliganj,
Jorbagh Road, New Delhi-110 003.

-The Member Secretery, (Central) State pollution Control Board, Odisha A/118, Nilakantha nagar, Bhubaneswar-751012

-The D.F.O. Koraput Division, Koraput - for kind information

-for kind information

STATUS OF COMPLIANCE TO THE CONDITIONS STIPULATED IN ENV. CLEARANCE FOR BAUXITE PRODUCTION @ 6.825 MTPY WITH RESPECT TO PANCHPATMALI CENTRAL & NORTH BLOCK BAUXITE MINE, NALCO

(Ministry Letter No. J-11015/49/2008-IA. II(M) Dt. 20-02-2009)

Sl.No.	A. SPECIAL CONDITIONS	Status of Complia		.2025					
i	The environmental clearance is in continuation to the environmental	The lease area rema	ins unchanged.		ck = 1315.264				
	clearance earlier accorded to this project by the Ministry vide letter No. J-11015/09/2000-IA.II (M) dated 30.07.2004. The lease area shall remain unchanged.	hectares.							
Ii .	The project proponent shall obtain Consent to Establish from the State Pollution Control Board and effectively implement all the conditions stipulated therein.	The consent to esta Central-North Bloc 16213/Ind-II-NOC-	k was obtained fi	om SPCB, Odi					
Iii	The environmental clearance is subject to grant of forestry clearance. The project proponent shall obtain requisite prior forestry clearance under the Forest (Conservation) Act,1980 for working in the forest area	Forest Clearance ex FC(PT-I) Dt.15 th S 1294.283 ha of fore	September 2014						
Iv	The mining operations shall be confined to the hill tops only and restricted to above ground water table and it should not intersect the groundwater table. In case of working below the ground water table, prior approval of the Ministry of Environment and Forests and the Central Ground Water Authority shall be obtained, for which a detailed hydro-geological study shall be carried out	It is revealed from a study by RAMKY (in Yr 2010) that the groun water table exists below 80 mtr. From the plateau top, where the mining activities are going on. As the Mining activities limited to 3 Mtrs only from the surface, there is no impact of Mining operation on the ground water / aquifers.							
V	The project proponent shall ensure that no natural watercourse and / or water resources are obstructed due to any mining operations. Adequate measures shall be taken while diverting seasonal channels emanating from the mine lease, during the course of mining operation.	No Natural water of mining operation who natural water cours to flow down below	hich is confined to e. No rain water	o hill top does from the minin	s no way obstruct ng area is allowed				
vi	The top soil shall temporarily be stored at earmarked site(s) only and it should not be kept unutilized for long. The topsoil shall be used for land	Top soil is being s backfilling of mined The top soil genera years are as follows.	out area. ted and utilized						
A LU	reclamation and plantation. Extra in the state of the st	Year	Top soil generated (MT)	Top soil utilized (MT)	Top soil stored (MT)				
Man	V EUNIO	2021-22	115000	115000	Nil				
Talligat	800 Silving Minus	2022-23	133490	133490	Nil				
del Come	Mbaroth 10	2023-24	171930	171930	Nil				
uchpan	amany	2024-25	130030	130030	Nil				
ALCO.	Partinonne By Environne Ji Bautile Mirre Jamentodi 783008	2025-26 as on 30.09.2025	31940	31940	Nil				

vii	The overburden (OB) generated shall be concurrently backfilled. There shall be no external over burden dump. The entire backfilled area shall be progressively afforested. Monitoring and management of rehabilitated areas should continue until the vegetation becomes self-sustaining. Compliance	OB generated is programme for the operation. The OB generated (for the last five year)	mined out are	a goes on concessoil) and utilize	urrent to minin				
	status shall be submitted to the Ministry of Environment and Forest and its Regional Office located at	Year	OB generated	OB utilized (MT)	OB stored (MT)				
	Bhubaneswar on six monthly basis.		(MT)						
		2021-22	798225	798225	Nil				
		2022-23	788300	788300	Nil				
		2023-24	800715	800715	Nil				
		2024-25	759305	759305	Nil				
		2025-26 as on 30.09.2025	286330	286330	Nil				
ix	appropriate size shall be constructed around the mine working, soil and mineral dumps to prevent run off of water and flow of sediments directly into the water bodies. The water so collected shall be utilized for watering the mine area, roads, green belt development etc. the drains shall be regularly desilted, particularly after the monsoon, and maintained properly. Garland drains, settling tanks and check dams of appropriate size, gradient and length shall be constructed around the mine pit, topsoil dumps and the mineral dumps to prevent run off of water and flow of sediments directly into the water bodies and sump capacity shall be designed keeping 50 % safety margin over and above peak sudden rainfall (based on 50 years data) and maximum discharge in the area adjoining the mine site. Sump capacity shall also provide adequate retention period to allow proper settling of silt material. Sedimentation pits shall be constructed at the corners of the garland drains and desilted at regular intervals Dimension of the retaining wall at the OB benches within the mine to check run-off and siltation should be based on	from the mineral st through drains. Rair cannot go out due to porous mined out sur peripheral barriers of any rain water from pits of adequate size drains with natural g surface, the rain water There are no wasted method has been ad periodically to maint no active dumps and dumps. The overburden mat mined out area. The out as there are in-sit	n water accumulation peripheral barraface. The minor the western going outside, have been keep radient. Due to the percolates do dumps or OB dopted. The tain the sump of the hence there is the tain the sump of the percolates are the percola	lated in the seding rier and percolate is a elongated sand eastern side. Inside the miner which collects proposed in the sedimentation papacity to hold with a proposed in the sedimentation of the s	mentation ponders down throughtrip of land with sever throught water through the mined out the ground water throughts are cleaned water. There are washouts from the water throughts are cleaned water throughts are cleaned water. There are the washouts from the water throughts are cleaned water. There are the washouts from the washouts from the washouts from the water throughts are cleaned water. There are the washouts from				
x	the rainfall data. The project proponent shall develop a	All the runoff are d mining area where th A green belt having	e collected wat	er percolates into	the ground.				
	7.5 m wide green belt in the safety zone all around the mining lease. In addition, plantation shall be raised in the backfilled and the reclaimed area, around void roads etc. by planting the	all around the Mined out area in the safety zone. This green belt is developed/ maintained 500M ahead of Mining operation. Native species like Jamun, Rose Apple, Guava, Mangos, Jackfruit, Tamarin, Karanj, etc are being planted at the rate of 2500 plants /ha for development of the green belt. In addition to that plantation has also been carried out in the backfilled/reclaimed area. **This green belt is developed, Developed and Developed and Developed area. **This green belt is developed, Mangos, Jackfruit, Tamarin, Rational Patting and Developed area. **This green belt is developed, Developed and Developed and Developed area. **This green belt is developed, Developed and Developed area. **This green belt is developed, Developed and Developed area. **This green belt is developed, Developed and Developed area. **This green belt is developed, Developed and Developed area. **This green belt is developed, Developed and Developed area. **This green belt is developed, Developed and Developed area. **This green belt is developed, Developed and Developed area. **This green belt is developed, Developed and Developed area. **This green belt is developed, Developed and Developed area. **This green belt is developed, Developed and Developed area. **This green belt is developed, Developed and Developed area. **This green belt is developed, Developed and Developed area. **This green belt is develope							

	The density of the trees should be around 2500 plants per ha.	Central and	North Block are as follows. at area: 1,741,402	out in different areas in						
		(ii) Other ar area/Convey Area/Power	eas like Safety zone and othe or Corrider/Auxiliary Facili line Area/ Magazine Area):	ties Area/Water Supply						
		iii) Waste D								
		(vi)Outside	lease area: 1,415,598.							
		3,565,556.	planted in Central and North							
		also carried	o the above plantation, as or out in Panchpatmali Central with 10000 Nos of saplings	and North Block with an						
xi	Regular water sprinkling shall be carried out in critical areas prone to air pollution and having high levels of		er sprinkling is being done u obile water tankers.	sing 06 no's of self-						
	SPM and RSPM such as around crushing and screening plant, loading and unloading point and all transfer		PLC controlled Auto sprin aul roads (4.5 km).	kling system installed over						
	point. Extensive water sprinkling shall		uality monitoring is done ev							
	be carried out on haul roads. It shall be ensured that the Ambient Air Quality		re A1(Baiguda village) da village), A4(Kakriguma v							
	parameters conform to the norms	village), A	6(Near Main Haul Road	Area), A7(Near Crusher						
	prescribed by the Central Pollution Control Board in this regard.	Panchpatma	oof of the HEMM main li Bhavan), A10(Near SMC	P North Block). The latest						
xii	Regular monitoring of the flow rate of		been measuring water flow							
	the springs and perennial nallahs		in 17 locations on monthly b							
	flowing in and around the mine lease shall be carried out and records	The stream flow has been measured at 17 locations during every month. The locations are 1.Litiguda, 2.Jholaguda, 3.Bhitara								
	maintained.		Barigurha, 5.Kapsiput, 6.Lita							
			la, 9.Tenguligurha, 10.Kakir .Kusumagurha, 14.Kirajhola							
			a and 17.Balipeta. For 25-26	as on 30.09.2025, the						
			ven at Annexure-II. was done on quarterly basis	and from last year it is						
			l out on monthly basis.							
xiii	The project authority shall implement suitable conservation measures to augment ground water resources in the	about 300 m	top, where the mining opera tr above the surrounding val pth of about 80mtr.							
	area in consultation with the Regional Director, Central Ground Water Board.	At present,	3 no. of rain water harves	sting reservoirs have been						
			op the mines. The capacity of							
		SI No.	Description	Capacity of storage in cum.						
		2	Pond no-1 Pond no-2	19800 23625						
		3	Pond no-3	10000						
	ON	Building, M	o rainwater harvesting struct ine Manager's Building and 2014 to augment ground w	nd MVT centre has been						
	of Con alk and	Further, the	method of Mining & the pe	eripheral barrier all around						
000	A Patrionia	does not allo outside valle	w the storm water from wi y areas. The water thus tra	thin the mining area to go						
To a	TI GENTIS BUYING TO SAN	recnarges the	ground water.							
St. Wal	CALL COUNTRY OF THE PROPERTY O	(M/s Geoenv	er advice of CGWB, Bhuba itech Research & Services Po	vt Ltd, Bhubaneswar) was						
	MAL	measures for	or carrying out a hydro-geolo rain water harvesting and aug te recommendations are imp	gmentation of ground water						

xiv	Regular monitoring of ground water level and quality shall be carried out in and around the mine lease by establishing a network of existing wells and constructing new piezometers during the mining operation. The monitoring shall be carried out four times in a year, pre-monsoon (April-May), monsoon (August), Post-monsoon (November) and winter (January) and the data thus collected may be sent regularly to the Ministry of Environment and Forest and its Regional Office, Bhubaneswar, the Central Ground Water Authority and the Regional Director, Central Ground Water Board. If at any stage, it is observed that the ground water table is getting depleted due to the mining	by construct table exists The ground November a (15 nos) M Village, Ter Village, Bij Chararha V Village, Kal parameters drinking wa	water level was monitored tion of borewells. It was at a great depth i.e. below 8 water quality monitoring is and January every year. The letingi Village, Chhatamba Yillage, Ichhapuraghati Village, Putraghati Village, Kapsiput Village, Jankiriguma Village, and Soris being monitored are as per ter. For 25-26, the results a fiezeometer has been constructed in the level.	found that the ground was months from the plateau top of done during April, Augus e monitoring locations are Village, Jharhiapadar village, Mundagarhati Village, Putraghati Village, mbagurha Village, Shrigud ha padar Village. The IS 10500:2012 specified for given at annexure-III.
xv	activity, necessary corrective measures shall be carried out. Appropriate mitigative measures shall be taken to prevent pollution of the Indravati River, the Vagabvalli river, Banadehar River and Kerandi River in consultation with the State Pollution	pollution of specified co	mitigative measures ha rivers in consultation with nditions in CTO to treat the runoff from mining area in	h SPCB, Odisha. They ha waste water streams and n
	Control Board.	Mines (2) ra Mining area around the retain the w contaminatin diverted to s water perco- in septic tan adequate fact the treated plantation p already expl Panchpatma parameters	taken- (1) There is no miner in water (with sediment) is as because of the insitu- principal mining pit. 21 check dark ashouts if any from the miner water bodies. (3) The rail edimentation basins where lates into the ground. (4)Effiks. (5) The mine being a scility to treat wash water frow water is completely reuse urpose and no waste water ained, Further the perennial in hill slopes are being rare within prescribed normation affects the river basin. Maway	also not allowed to go out eripheral barrier existing a ms have been constructed ning area going downhill and an water around stockpiles a solid particle settle down and fluent from toilets are treat zero discharge mine, has go om Workshop & Canteen and for dust suppression and it is discharged outside. If a streams emanating from the monitored regularly and a ms. As such in no way the
xvi	The project proponent shall obtain necessary prior permission of the competent authorities for drawl of requisite quantity of water (surface water and ground water) required for the project		for drawal of surface water D is available vide letter No	
xvii	Suitable rainwater harvesting measures on long term basis shall be planned and implemented in consultation with the Regional Director, Central Ground		3 no. of rain water harve op the mines. The capacity	
	Water Board	SI No.	Decription	Capacity of storage in cum.
		1	Pond no-1	19800
	0.2	2	Pond no-2	23625
C	Carried Carried Links Inch 18 18 18 18 18 18 18 18 18 18 18 18 18	Building ,M	Pond no-3 p rainwater harvesting structine Manager's Building y 2014 to augment ground y	and MVT centre has be
C	St. Ma Darette CO. Damantah in Sans	Also, roofto Building ,M	p rainwater harvesting struction Manager's Building	ctures for the Admi and MVT centre

		Further, the method of Mining & the peripheral barrier all around does not allow the storm water from within the mining area to go outside valley areas. The water thus trapped, percolates down & recharges the ground water. Further as per advice of CGWB, Bhubaneswar, a suitable agency (M/s Geoenvitech Research & Services Pvt Ltd, Bhubaneswar) was appointed for carrying out a hydro-geological study for suggesting						
		measures for rain water harvesting and augmentation of ground water						
xviii	Vehicular emissions shall be kept under control and regularly monitored. Measures shall be taken for maintenance of vehicles used in mining operations and in transportation of mineral within the lease up to the stockyard. The mineral transportation within the mine lease shall be carried out through the covered trucks only and the vehicles carrying the mineral shall not be overloaded	resources. The recommendations are implemented. Monitoring of exhaust emission of all the vehicles operating at mine is conducted once in six months through an outside agency authorized by SPCB, Odisha. Bauxite ore is transported in the mine area in an environmentally safe manner by limiting the speed limit of transporting equipment and also by maintaining proper road conditions.						
xix	No blasting shall be carried out after the sunset. Blasting operation shall be carried out only during the daytime. Controlled blasting shall be practiced. The mitigative measures for control of ground vibrations and to arrest fly rocks and boulders should be implemented.	Blasting has been stopped since April 2022. Whenever it will be done in future, it will be done during shift change over between 1.15PM to 2PM. No blasting will be done beyond day light hours. Further, controlled blasting will be practiced with use of NONELs for sequential blasting to reduce fly rocks, boulders & ground vibration.						
XX	Drills shall either be operated with dust extractors or equipped with water injection system	All drills are operated with vacuum dust extraction system with provision of water injection for dust suppression.						
xxi	Mineral handling area shall be provided with adequate number of high efficiency dust extraction system. Loading and unloading areas including all the transfer points should also have efficient dust control arrangements. These should be properly maintained and operated.	All transfer points in crushing & Conveying system are provided with efficient dry fog system to suppress dust at source.						
xii	Consent to operate shall be obtained from the State Pollination Control Board, Orissa prior to start of enhanced production from the mine.	At present Mine is operating with consent to operate for 6.825 MTPA production capacity vide order No. 5061/Ind-I-Con-92, Dtd. 04-04-2024/CONSENT ORDER NO.58, which is valid upto 31.3.2026.						
xxiii	Sewage treatment plant shall be installed for the colony. ETP shall also be provided for the workshop and wastewater generated during the mining operation	The Mine & Refinery combined township exists 20KM away at Damanjodi where sewerage treatment plant is provided whereas The mine is operating a zero discharge system for effluents where all the waste water is treated, analyzed and reused for sprinkling on the haul road for dust suppression and plantation. Effluents from the Mechanical Workshop area is being channelized through well-designed oil-water separation tank where oil is collected and the clear water is collected in zero discharge sump. There is a canteen waste water disposal system (biological treatment unit) designed, constructed and maintained to treat the canteen waste water. All the treated waste water from canteen and HEMM workshop is used for horticulture & dust suppression.						
xxiv	Pre-placement medical examination and periodical medical examination of the workers engaged in the project shall be carried out and records maintained. For the purpose, schedule of health examination of the workers should be drawn and following accordingly.	For all eligible employees of Central & North Block, periodical medical examinations are done & records thereof maintained. During April 2025- Sep 2025, 225 nos of employees have undergone periodical medical testing. No occupational diseases have been detected so far.						
		Sr. Manager (Geology)-Environ Sr. Manager (Geology)-Environ Panchpatmali Bauxile Mine Panchpatmali Bauxile Mine NALCO, Damenlodi-763008						

xxv	Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc. the housing may be in the form of temporary structures to be removed after the completion of the project.	No labour camp exists on plateau top. All construction laborers /workers come from Damanjodi & surrounding villages at the foothill of Panchpatmali hill.
xxvi	The project proponent shall take all precautionary measure during mining operation for conservation and protection of endangered flora and fauna found in the study area. Action plan for conservation of flora and fauna shall be prepared and implemented in consultation with the State Forest and Wildlife Department. Necessary allocation of funds for implementation of the conservation plan shall be made and the fund so allocated shall be included in the project cost. All the safeguard measures brought out in the Wildlife Conservation Pan so prepared specific to the project site shall be effectively implemented. A copy of action plan shall be submitted to the Ministry of Environment and Forest and its Regional Office, Bhubaneswar.	A Site Specific Wildlife Management plan as prepared by NALCO has been approved by PCCF(Wildlife), Odisha, Bhubaneswar vide Memo No. 4011/1 WL(C) SSP-397/2013 Dt. 19 th May 2014, On the basis of the above stated approval, DFO, Koraput had raised a demand note No.1838 Dt. 26-05-2014 for payment of Rs. 2011.50 lakhs. With reference to the above stated demand note, NALCO has made a payment of Rs. 2011.50 lakhs in Orissa CAMPA account in Corporation Bank, Lodhi Road, New Delhi through RTGS on Dt.04-06-2014. Besides the above, a total amount of Rs 7, 62, 85,312/- have been deposited in different phases as per demand letters of DFO,Koraput in Orissa CAMPA by NALCO towards Regional Wildlife Management Fund for implementation by State Forest Department. The conservation measures suggested are under process of implementation. The copy of action plan has been submitted to MoEF&CC vide letter No- NAL/MIN/GM(Mines)2017/677, Dtd. on 12-10-2017. The status of implementation of conservation measures are given in Annexure-IV.
xxvii	Digital processing of the entire lease area using remote sensing technique shall be carried out regularly once in three years for monitoring land use pattern and report submitted to Ministry of Environment and Forests and its Regional Office, Bhubaneswar	A digital land-use map (shape file) as on 31.3.2024 has been submitted to MoEF&CC, Bhubaneswar on 18 th Nov 2024 vide mail.
xxviii	A Final Mine Closure Plan along with details of Corpus Fund shall be submitted to the Ministry of Environment & Forests 5 years in advance of final mine closure of approval.	Final mine closure plan shall be submitted to the Ministry of Environment & Forests 5 years in advance of final mine closure.
	GENERAL CONDITIONS	
i	No change in mining technology and scope of working should be made without prior approval of the Ministry of Environment & Forests	The user agency (NALCO) undertakes that there shall be no change in technology and scope of work without prior approval from MoEF.
ii	No change in the calendar plan including excavation, quantum of mineral bauxite and waste should be made	The user agency (NALCO) undertakes that there shall be no change in calendar plan including excavation, quantum of Bauxite, Waste/OB generation of work without prior approval from competent authority.
iii	At least four ambient air quality- monitoring stations should be established in the core zone as well as in the buffer zone for RSPM, SPM, SO2 & NOx monitoring. Location of the stations should be decided based on the meteorological data, topographical features and environmentally and ecological sensitive targets and frequency of monitoring should be undertaken in consultation with the State Pollution Control Board.	At present 10 air quality monitoring stations are established in and around Mines based on the mentioned factors and measurements are being done once in every month for parameters as per the latest MOEF notification of September 2009. The location of monitoring stations has been fixed in consultation with SPCB, Odisha.
		Sr. Manager (Geology) Sr. Manager (Geology) Panchpatmail Bauxile Mine NALCO, Demaniod-763008

iv	Data on ambient air quality (RSPM,	Data on air quality is being collected once in every month Pagards
IV	SPM, and SO2 & NOx) should be regularly submitted to the Ministry of Environment and Forests including its	Data on air quality is being collected once in every month. Records submitted to statutory authorities once in six months.
	Regional office located at Bhubaneswar and the State Pollution Control Board / Central Pollution Control Board once in six month.	The AAQ quality monitoring is done every month. The monitoring locations are A1(Baiguda village), A2(Bitiarguda Village), A3(Goudguda village), A4(Kakriguma village), A5(Upper Meeting village), A6(Near Main Haul Road Area), A7(Near Crusher
		HouseA8(Roof of the HEMM main building), A9(Roof of Panchpatmali Bhavan), A10(Near SMCP North Block). ambient air analysis for the period April 2025 to Sep 2025 are given at Annexure-I.
v	Fugitive dust emissions from all the sources should be controlled regularly. Water spraying arrangement on haul roads, loading and unloading and at transfer points should be provided and	Water spraying on haul road is carried out both with fixed (4.5 km long) and mobile sprinklers (6 nos). Loading points of crusher house is provided with dry fog system. One no of fog cannon has also been deployed in the stock pile area to suppress dust.
	properly maintained.	Transportation of Bauxite ore is carried out through a cable belt conveyor of 14.6KM long, provided with hood all along.
vi	Measures should be taken for control of noise levels below 85 dBA in the work environment. Workers engaged in operations of HEMM, etc. should be provided with ear plugs / muffs	Noise monitoring in work zone is taken up once in every quarter. Equipment selection is done keeping noise reduction features in view. Workers are provided with ear plugs /muffs. Besides ambient noise level is being monitored at 10 locations in and around the mine. Noise level monitoring for the period April 2025 to Sep 2025 is available at annexure-V.
vii	Industrial waste water (workshop and waste water from the mine) should be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19 th May, 1993 and 31 st December 1993 or as amended from time to time. Oil and grease trap should be installed before discharge of workshop effluents.	The mine is operating a zero discharge system for effluents where all the waste water is treated, analyzed and reused for sprinkling on the haul road for dust suppression and plantation. Effluents from the Mechanical Workshop area is being channelized through well-designed oil-water separation tank where oil is collected and the clear water is collected in zero discharge sump. There is a canteen waste water disposal system (biological treatment unit) designed, constructed and maintained to treat the canteen waste water. All the treated waste water from canteen and HEMM workshop is used for horticulture & dust suppression. The treated waste water from canteen and HEMM workshop area are analysed before being reused. The parameters are analysed every month. The analysis results for 2025-26 are available at Annexure-VI. The above treated water is completely reused without discharging outside.
viii	Personnel working in dusty areas should wear protective respiratory devices and they should also be provided with adequate training and information on safety and health aspects Occupational health surveillance programme of the workers should be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed	All employees and contract workers are provided with protective devices. Regular training programmes are held in MVT center on health and safety aspects for contract workers as well as employees. For all eligible employees of Central & North Block, periodical medical examinations are done & records thereof maintained. During April 2025-Sep 2025, 225 nos of employees have undergone periodical medical testing. No occupational diseases have been detected so far.
ix	A separate environmental management cell with suitable qualified personnel should be set-up under the control of a Senior Executive, who will report	A Separate Environmental Management Cell, being headed by Sr.Mgr(Geo)-Env. who is reporting directly to CGM (Mines), exists for management of environment.

Sr. Manager (Geology)-Environme Sr. Manager (Geology)-Environme Panchpatmali Bauxite Mine Panchpatmali Bauxite Mine NALCO, Damenhodi-763008

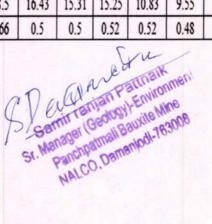
	directly to the Head of the Organization.										
X	The funds earmarked for environmental protection measures should be kept in separate account and should not be diverted for other purpose. Year wise expenditure should be reported to the Ministry of Environment and Forests and its Regional Office located at Bhubaneswar	separadeque for in The f divertiment environment total e date a Panch three	ate account for ate fund is prostallation and is und earmarked ated for any other the capital commental control aditures for Comment are carexpenditure with and the recurring patmali (Centry ears are as for a stallation and the recurring patmali (Centry ears are as for a stallation and the recurring patmali (Centry ears are as for a stallation and the recurring patmali (Centry ears are as for a stallation and the recurring ears are as for a stallation and the recurring ears are as for a stallation and the recurring ears are as for a stallation and the recurring ears are as for a stallation and the recurring ears are as for a stallation and the recurring ears are as for a stallation and the recurring ears are as for a stallation and the recurring ears are as for a stallation and the recurring ears are as for a stallation and the recurring ears are as for a stallation and the recurring ears are as for a stallation and the recurring ears are as for a stallation and the recurring ears are a stal	r environment vided under the maintaining value of the maintaining expenditure of the maintaining value o	tal protection made budget of executious pollution of ental protection dequate fund is a green expenses to inclusive of porth Block and agh common conjointly. The capital for protection expenses is a possible for protection of Block) Bauxite	ow for creating a easures. However uting department. control measures. measures is nevel lways allocated to implement the plantation. Many South Block or tracts. Hence the tal expenditure till of environment a Mine for the las					
		b. Re	curring cost			2025.26					
		S. No	Activity	2023-24 (Rs)	2024-25 (Rs)	2025-26 (Rs)					
		1.	Backfilling and land reclamation*	62,960,586. 87	59,788,134.00	22,211,322.00					
		2.	Environment al Pollution Control	65,81,220.0	70,40,589.00	7,415,404.00					
		3.	Plantation and Horticulture	87,44,999.0 0	12,397,646.00	7,488,544.00					
		4	Operation and maintenance of Water Sprinkling system & zero discharge system	9,62,991.00	31,92,809.00	2,735,694.00					
			Total	7,92,49,796. 44	82,419,179.00	39,850,965.00					
		Note- Backfilling and land reclamation cost is calculated based of the proportionate cost for diesel incurred in handling of overburde material as compared to the total excavation.									
xi	The project authorities should inform to the Regional Office located at Bhubaneswar regarding date of financial closures and final approval of the project by the concerned authorities and the date of start of land development work	The M			e kept informed	as required.					
xii	The Regional Office of this Ministry located at Bhubaneswar shall monitor compliance of the stipulated conditions. The project authorities should extnd full cooperation to the officer (s) of the Regional Office by furnishing the requisite data / information / monitoring reports	officer	rs of the Re meswar by fur	egional Offic	e of the Min	e extended to the istry located at ation/ monitoring					
kiii	The project proponent shall submit six monthly report on the status of the implementation of the stipulated environmental safeguards to the	stipula	Six monthly report on the status of the implementation of the stipulated environmental safeguards is being submitted to MoEF Govt. of India and State Pollution Control Board regularly. St. Manager (Geology)-Environment								

Sr. Menager (Geology)-Environment Panchpatmali Bauxite Mine NALCO. Damenlodi-763008

	Ministry of Environment and Forests, its Regional Office Bhubaneswar, Central Pollution Control Board and State Pollution Control Board. The proponent shall upload the status of compliance of the environmental clearance conditions on their website and update the same periodically.	
xiv	A copy of clearance letter shall be marked to concerned Panchyat /local NGO, if any, from whom suggestion / representation has been received while processing the proposal	No such suggestions / representation has been received from the Panchayat / local NGO, while processing the clearance proposal.
xv	The State Pollution Control Board should display a copy of the clearance letter at the Regional office, District Industry Centre and the Collector's office / Tahsildar's Office for 30 days	The clearance letter has been displayed at the required places.
xvi	The project authorities should advertise at least in two local newspapers widely circulated, one of which shall be in the vernacular language of the locality concerned, within 7 days of the issue of the clearance letter informing that the project has been accorded environmental clearance and a copy of the clearance letter is available with the State Pollution Control Board and also at web site of the Ministry of Environment and Forest at http://envfor.nic.in and a copy of the same should be forwarded to the Regional Office of the Ministry located at Bhubaneswar.	The accordance of Environmental clearance has been advertised in two local newspapers.
xvii	Plantation of saplings shall be carried out in the earmarked 33% greenbelt area as a part of the tree plantation campaign "Ek Ped Maa Ke Naam" and the details of the same shall be uploaded in the MeriLiFE Portal (https://merilife.nic.in)	Nalco has been registered under National Meri Life portal and the Tree plantation status has been uploaded along with Observation of World Environment day as Mission life action report.

(P Mohanta)
Chief General Manager(Mines)

PURUSOTTAM MOHANTA Chief General Manager (Mines) Panchpatmali Bauxite Mines NALCO, Damanjodi-763008


ANNEXURE-I

AMBIENT AIR QUALITY ANALYSIS AT PANCHPATMALI CENTRAL & NORTH BLOCK BAUXITE MINE

il. No.	Monitoring station	Parameter	Norm	Apr'25	May'25	Jun'25	Jul'25	Aug'25	Sep'25	Oct'25	Nov'25	Dec'25	Jan'26	Feb'26	Mar'26	Avg
_	A1 (Baiguda	RPM (µg / m3)														
	village)	PM 2.5(60µg / m3)	60	26.3	25.75	25.75	25.98	21.89	27.9							25.6
		PM10(100µg / m3)	100	47.5	50.79	48.9	53.28	40.86	48.96							48.3
		NRPM (µg /m3)		51.8	38.86	32.6	35.52	34.79	32.6							37.7
		SPM(µg/m3)		99.3	84.64	81.51	88.79	75.65	81.56							85.2
	and the second	SO ₂ (80 μg /m3)	80	8.6	6.13	6.13	6.18	6.13	5.72							6.4
		NO _X (80μg/m3)	80	15.4	11.24	11.24	11.33	9.63	9.23							11.3
		CO (2 mg/m3)	2	0.43	0.5	0.48	0.53	0.4	0.48							0.47
2	A2 (Bitiarguda	RPM (µg / m3)	-	0.13	0.5	0.10	0.55	0.1	0.10							0.11
٠	Village)	PM 2.5(60µg / m3)	60	27.1	29.79	30.05	30.05	22.56	28.94							28.0
		PM10(100µg / m3)	100	49.5	51.34	53.85	51.78	40.73	50.35					B		49.5
		NRPM (µg/m3)	100	53.4	29.63	31.08	29.89	34.55	29.63							34.7
		SPM(µg/m3)		102.9	80.97	84.93	81.67	75.28	79.98							84.2
		SO ₂ (80 μg /m3)	80	9.4	6.89	6.89	6.95	5.67	6.08							6.9
		NO _X (80μg/m3)	80	17.2	11.94	12.04	12.04	9.95	9.15							12.0
			2	0.51	.0.51	0.53	0.51	0.41	0.5	-						0.50
2	A3 (Goudguda	CO (2 mg/m3) RPM (µg/m3)		0.51	.0.31	0.55	0.31	0.41	0.5							0.50
3	village)	PM 2.5(60µg / m3)	60	24.3	25.75	26.67	25.54	22.32	27.04							25.2
	village	PM 2.5(00µg / m3)	100	45.8	47.67	45.57	47.26	46.63	49.95							47.1
		NRPM (μg /m3)	100	49.1	43.07	41.17	42.7	38.71	35.61							41.7
		SPM(µg/m3)		94.9	90.74	86.75	89.97	85.34	85.56							88.8
Ì			80	8.4	7.33	7.33	7.29	6.95	5.31							7.1
		SO ₂ (80 μg /m3)		_	12.04	12.47	11.94	9.63	9.63			- 7				11.7
J		NO _X (80µg/m3)	80	14.6					5000000							-
		CO (2 mg/m3)	2	0.42	0.47	0.47	0.47	0.42	0.49							0.46
4		RPM (µg / m3)		20.7	20.05	21.26	20.05	22.10	20.40					-		28.9
	village)	PM 2.5(60µg / m3)	60	28.7	30.05	31.26	30.05 53.73	23.18 45.82	30.48 52.82							57.3
		PM10(100µg / m3)	100	50.4	67.81 50.87	73.25 54.95	54.94	21.39	20.53							42.8
		NRPM (µg /m3)		54.2 104.6	118.68	128.21	108.67	67.2	73.35							100.1
		SPM(μg /m3)	80	-		6.13			8.17							7.0
		SO ₂ (80 μg /m3)		10.2	6.13		6.13	5.72								
		NO _X (80μg /m3)	80	17.3	12.44	12.94	12.44	10.03	10.03							12.53
		CO (2 mg/m3)	2	0.52	0.67	0.67	0.53	0.45	0.52							0.56
	A5 (Upper	RPM (µg / m3)		20.1	20.05	27.02	26.26	21.00	26.10					-		26.00
	Meeting	PM 2.5(60µg / m3)	60	30.1	30.05	27.92	25.75	21.89	26.18				-			26.98
	village)	PM10(100µg / m3)	100	51.9	60.38	63.36	51.44	42.62	47.25							52.83
1		NRPM (µg /m3)		55.6	54.31	56.09	45.53	40.48	35.78							47.9
		SPM(µg/m3)		107.5	114.7	119.45		83.1	83.04							100.79
		SO ₂ (80 μg /m3)	80	11.7	8.99	8.99	5.31	6.13	5.31							7.74
		NO _X (80μg/m3)	80	18.4	14.04	13.05	12.04	9.63	9.23							12.7
		CO (2 mg/m3)	2	0.63	0.6	0.6	0.51	0.42	0.47							0.54
~	A6 (Near Main	RPM (µg / m3)							eelm n							
	Haul Road Area)	PM 2.5(60µg / m3)	60	38.2	25.75	29.79	30.05	25.75	30.91							30.08
		PM10(100µg/m3)	100	58.4	51.44	59.87	54.87	52.8	53.16							55.09
		NRPM (µg/m3)		64.3	45.53	53.85	54.31	49.26	46.04							52.22
		SPM(µg/m3)		122.7	96.97	113.72	109.18	102.07	99.2						2	107.3
		SO ₂ (80 µg/m3)	80	13.2	5.31	5.31	8.99	5.31	5.31							7.24
		NO _X (80μg/m3)	80	21.5	12.04	13.92	14.04	10.03	11.24							13.80
		CO (2 mg/m3)	2	0.79	0.51	0.59	0.54	0.52	0.53							0.58

Sr. Manager (Geology)-Environment Panchpatmali Bauxite Mine NALCO, Damaniodi-763008

Monitoring station	Parameter	Norm	Apr'25	May'25	Jun'25	Jul'25	Aug'25	Sep'25	Oct'25	Nov'25	Dec'25	Jan'26	Feb'26	Mar'26	Avg
7 A7 (Near	RPM (µg / m3)	EL													
Crusher House)	PM 2.5(60µg / m3)	60	39.4	34.05	34.64	33.48	27.66	34.47							33.95
	PM10(100µg / m3)	100	59.6	68.45	67.06	61.65	63.53	62.31							63.77
	NRPM (µg/m3)		65.2	78.4	76.81	85.66	69	61.24							72.72
	SPM(µg/m3)		124.8	146.85	143.86	147.31	132.54	123.55							136.49
	SO ₂ (80 µg/m3)	80	13.7	8.51	8.51	8.58	6.48	8.1							8.98
	NO _X (80µg/m3)	80	20.3	15.91	16.19	13.24	10.34	11.94				1			14.65
	CO (2 mg/m3)	2	0.76	0.68	0.67	0.61	0.63	0.62							0.66
8 A8 (Roof of the	RPM (µg / m3)														
HEMM main	PM 2.5(60µg / m3)	60	32.4	30.05	30.57	29.79	26.18	26.61							29.27
building)	PM10(100µg/m3)	100	54.1	57.11	53.64	50.33	49.09	47.25							51.92
	NRPM (µg/m3)		58.7	61.17	57.45	53.91	47.25	47.25							54.29
	SPM(µg/m3)		112.8	118.28	111.09	104.24	96.34	94.51							106.21
	SO ₂ (80 µg/m3)	80	12.8	9.4	9.4	9.32	5.72	7.35				Male			9.00
4	NO _X (80µg/m3)	80	18.3	13.24	13.47	13.13	10.83	9.63							13.10
	CO (2 mg/m3)	2	0.62	0.57	0.53	0.5	0.49	0.47							0.53
9 A9 (Roof of	RPM (µg / m3)														
Panchpatmali	PM 2.5(60µg / m3)	60	31.9	34.34	34.19	32.19	23.18	29.19							30.83
Bhavan)	PM10(100µg/m3)	100	53.4	60.56	54.7	54.94	57.23	52.99	BIB						55.64
	NRPM (µg /m3)		56.2	59.53	55.62	55.86	46.24	44.39			19				52.97
	SPM(µg/m3)		109.6	120.09	110.32	110.8	103.46	97.38							108.61
	SO ₂ (80 μg/m3)	80	12.3	8.58	8.58	7.35	6.13	8.17							8.52
	NO _X (80μg /m3)	80	17.2	15.25	16.38	14.04	11.24	10.03							14.02
	CO (2 mg/m3)	2	0.68	0.6	0.54	0.54	0.57	0.44		26-1					0.56
10 A10 (Near SMCP															
North Block)	PM 2.5(60µg/m3)	60	28.4	34.34	34.49	31.76	24.47	27.24							30.12
	PM10(100µg/m3)	100	51.3	50.87	60.82	52.23	52.72	48.22							52.69
	NRPM (µg /m3)		53.4	51.72	59.78	57.24	51.72	51.28							54.19
	SPM(µg/m3)		104.7	102.59	120.6	115.47	104.44	99.5							107.88
	SO ₂ (80 µg/m3)	80	10.2	7.35	7.35	8.58	5.72	6.08							7.55
	NO _X (80μg /m3)	80	18.5	16.43	15.31	15.25	10.83	9.55							14.31
	CO (2 mg/m3)	2	0.66	0.5	0.5	0.52	0.52	0.48							0.53

ANNEXURE-II FLOW RATES OF SPRINGS AROUND PANCHPATMALI CENTRAL & NORTH BLOCK BAUXITE MINE (2025-26)

Stream water Quality Analysis April 2025

SL.		210							Samp	ling Stati	on Code							
NO	Parameters	G-1	G-2	G-3	G-4	G-5	G-6	G-7	G-8	G-9	G-10	G-11	G-12	G-13	G-14	G-15	G-16	G-17
		Litigoda	Jholaguda	Bhitara Bhejaput	Barigurha	Kapsiput	Litaputta	Murdagurh 2	Gaurhagud a	Tengoligor ha	Kakirgum a	Tentulipad ar	Keler	Kusumagur ha	Kirajhola	Rangapani	Pansaputa	Balipe
1	Temp (°C)	33 ⁰ C	32 ⁰ C	32 ⁰ C	33 ⁰ C	34 ⁰ C	34 ⁰ C	32 ⁰ C	33 ⁰ C	34 ⁰ C	34°C	32 ⁰ C	32 ⁰ C	34 ⁰ C	34 ⁰ C	33 ⁰ C	33 ⁰ C	32 ⁰ C
2	pH Value	6.8	6.8	6.8	6.8	6.8	6.9	6.9	6.8	6.8	6.9	6.9	6.9	6.8	6.8	6.8	6.8	6.9
3	Dissolve Oxygen, mg1	4	4	4	4.2	4.1	4	4	3.8	4	4	4	4.1	4.2	4.1	4.1	4	4
4	Total Dissolved Solids, mg1	3	3	3.4	3	3	3.2	3.2	3.2	3.3	3	3.1	3.2	3.2	3.2	3.2	3.2	3.2
5	Total Hardness, (as CaCO ₃), mg/l	20	20	28	28	24	28	20	16	20	24	24	20	24	20	20	24	24
6	Suspended solids mg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
7	B.O.D mg/1 3 days at 27°C	<3.0	⊴.0	3.0	<3.0	3.0	<3.0	₫.0	<3.0	<3.0	3.0	<3.0	<3.0	3.0	<3.0	<3.0	<3.0	3.0
8	Nitrate (as NO3), mg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
9	Chloride as CI — mg·l	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
10	Sulphate (as SO4), mg/l	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
11	Calcium (as Ca), mg/l	6	6	6	5	5	6	6	6	6	8	8	8	6	6	6	6	10
12	Magnesium (as Mg), mg/l	1.3	1.2	3.1	1.9	2.6	3.1	1.2	<0.243	1.2	0.972	0.972	<0.243	2.1	1.2	1.2	1.9	<0.243
13	Turbidity,(N.T.U.)	2	4	6.5	5	2.6	2.2	2.1	2.4	2.2	6	5.5	5.9	4	6.1	6.5	2	8.4
14	Fluoride as F, mg1	< 0.1	<0.1	< 0.1	< 0.0	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.0	<0.1	< 0.1	<0.1	<0.1	< 0.1
15	Phenolic Compounds, (as C _a H _e OH) ,mg/l	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
16	Arsenic (as As), mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
17	Mercury (as Hg), mg/l	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
18	Lead (as Pb), mg1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
19	Cadmium (as Cd), mg1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
20	Chromium (as Cr ⁴), mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
21	Copper (as Cu), mg1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
22	Zinc (as Zn) mg/l	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
23	Iron (as Fe), mg/l	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1
24	STREAM FLOW RATE (m³/sec)	3.752	1.161	0.557	0.887	1199	0.787	1.657	1.68	0.592	1.188	0.369	1.076	0.584	0.71	0.799	0.448	0.288

Stream water Quality Analysis May 2025

SL.									Samp	ling Statio	on Code		-					
NO	Parameters	G-1	G-2	G-3	G-4	G-5	G-6	G-7	G-8	G-9	G-10	G-11	G-12	G-13	G-14	G-15	G-16	G-17
		Litiguda	Jholaguda	Bhitara Bhejaput	Barigurha	Kapsiput	Litaputta	Murdagurh a	Gauchagud	Tenguligur ha	Kakirgum a	Tentulipad ar	Keler	Kusumagur ha	Kirajhola	Rangapani	Pansaputa	Balipet
1	Temp (^a C)	24.4	24.1	25	25.2	24.8	24.1	24.6	25.3	25.1	25.1	24.8	24.7	24.9	25.1	25.3	24.6	24.2
2	pH Value	6.5	6.63	6.62	6.72	6.62	6.78	6.7	6.81	6.63	6.63	6.67	6.72	6.8	6.74	6.7	6.81	6.69
3	Dissolve Oxygen, mg/l	6.8	6.7	6.7	6.7	6.6	6.8	6.3	6.7	6.7	6.7	6.9	6.8	6.7	6.5	6.4	6.3	6.7
4	Total Dissolved Solids, mg/l	28	28	20	24	34	30	26	34	42	42	40	30	34	26	22	24	40
5	Total Hardness, (as CaCO ₃), mg/l	22	20	11	22	32	29	11	22	36	36	29	29	22	1	4	11	25
6	Suspended solids mg/l	4	4	4	Q.5	3.2	0.5	Q.25	4	6	6	Q.5	6	4	Q 5	4	45	Q 5
1	B.O.D mg1 3 days at 27°C	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
8	Nitrate (as NO3), mg1	0.259	<0.05	0.574	<0.05	1.07	40.05	0.62	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
9	Chloride as Cl – mg/l	6	8	6	4	4	6	4	4	6	4	6	4	4	6	6	6	4
10	Sulphate (as \$04), mg/l	1.3	1.4	1	1.4	3.6	2.4	1.1	3.3	<1.0	1.6	3.9	3.4	1.2	2.8	3.3	6.5	3.7
11	Calcium (as Ca), mg/l	4.3	4.3	2.8	43	4.3	5.7	2.8	43	7.2	7.2	5.7	8.6	5.7	<1.0	<1.0	1.4	4.3
12	Magnesium (as Mg), mg·l	2.72	2.72	<1.0	2.72	5.15	3.54	<1.0	2,72	4.37	4.37	3.54	1.79	1.84	1.7	<1.0	1.79	3.45
13	Turbidity,(N.T.U.)	1	0.6	4.2	3	1	0.9	2.2	2	2.8	2.8	1.6	0.8	1.4	3.3	1.5	0.8	3.8
14	Fluoride as F, mg/l	0.1	0.13	<0.1	<0.1	< 0.1	<0.1	0.11	0.5	0.16	0.16	<0.1	0.8	<0.1	0.3	0.6	<0.1	0.12
15	Phenolic Compounds, (as C ₈ H ₆ OH) ,mg/l	<0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
16	Arsenic (as As), mg1	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	Ф.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
17	Mercury (as Hg), mg/l	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
18	Lead (as Pb), mg/l	2.54	<0.005	< 0.005	< 0.005	< 0.005	Ф.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
19	Cadmium (as Cd), mg1	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
20	Chromium (as Cr*), mg/l	< 0.01	<0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02	<0.2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
21	Copper (as Cu), mg/l	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
22	Zinc (as Zn) mg/l	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
23	Iron (as Fe), mg/l	0.5	0.4	0.75	0.7	0.5	0.4	0.21	0.63	0.72	0.72	0.66	0.52	0.7	0.72	0.39	0.64	0.71
24	STREAM FLOW RATE (m ³ /sec)	3.804	1.198	0.555	0.882	1.446	0.833	1.602	1.59	0.644	1.235	0.364	0.721	0.636	0.765	0.824	0.287	0.824

Sr. Manager (Geology)-Environmen.

NALCO, Damanlodi-763008

Stream water Quality Analysis June 2025

SL.									Samp	ling Statio	on Code							
NO	Parameters	G-1	G-2	G-3	G-4	G-5	G-6	G-7	G-8	G-9	G-10	G-11	G-12	G-13	G-14	G-15	G-16	G-17
		Litigoda	Jholagoda	Bhitara Bhejaput	Barigurha	Kapsiput	Litaputta	Murdagurh a	Gauchagud a	Tengoligor ha	Kakirgum 2	Tentulipad ar	Keler	Kusumagur ha	Kirajhola	Rangapani	Pansaputa	Balipeta
1	Temp (°C)	24.1	24.2	24.4	25	24.8	24.6	24.8	25	25.1	25	25	24.8	24.9	24.9	24.2	25	25.1
2	pH Value	6.9	6.8	6.9	6.9	6.71	6.69	6.81	6.9	6.8	6.8	6.9	6.71	6.7	6.7	6.28	6.7	6.71
3	Dissolve Oxygen, mg/l	6.6	6.8	6.4	6.7	6.7	6.8	6.8	6.7	6.4	6.4	6.5	6.4	6.7	6.9	6.9	6.7	6.7
4	Total Dissolved Solids, mg1	26	32	20	32	40	44	30	36	26	20	24	42	32	32	28	36	50
5	Total Hardness, (as CaCO ₃), mg/l	24	28	12	24	36	28	28	20	8	40	12	28	24	24	16	36	40
6	Suspended solids mg/l	4	Q.5	Q.5	4	4	4.5	4.4	4	0.5	4	0.5	4	1.4	1.4	1	4.4	1.9
1	B.O.D mg/l 3 days at 27°C	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
8	Nitrate (as NO3), mg (<0.05	<0.05	0.574	<0.05	1.07	<0.05	0.62	<0.05	<0.05	<0.05	<0.05	<0.05	40.05	<0.05	<0.05	<0.05	<0.05
9	Chloride as CI – mg·l	8	6	4.6	4	6	6	4	4	6	6	6	4	6	6	6	12.01	8
10	Sulphate (as SO4), mg/l	1.3	3.2	1	3.6	<1.0	4.1	4.2	1.4	2.4	3.8	6.4	4	1.4	1.4	1	4,4	1.9
11	Calcium (as Ca), mg/l	6.4	4.8	2.8	4.8	6.4	6.4	8	6.4	<1.0	<1.0	3.2	4.8	4.8	4.8	4.8	4.8	8
12	Magnesium (as Mg), mg/l	1.94	3.88	<1.0	2.72	5.15	3.54	<1.0	2.72	1.94	<1.0	<1.0	3.88	2.91	2.91	<1.0	5.83	4.86
13	Turbidity,(N.T.U.)	0.42	Ø.1	2	2	2	1	0.9	1	3	1	0.8	3	1	1	4	1	3
14	Fluoride as F, mg/l	0.12	<0.1	0.11	0.49	0.18	<0.1	0.82	40.1	0.3	0.49	<0.1	0.14	0.1	0.2	<0.1	Q.1	0.2
15	Phenolic Compounds, (as C _a H _g OH) ,mg/l	Ø.5	<0.5	40.5	<0.5	40.5	40.5	<0.5	40.5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
16	Arsenic (as As), mg/l	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
17	Mercury (as Hg), mg/l	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
18	Lead (as Pb), mg1	2.54	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
19	Cadmium (as Cd), mg/l	< 0.001	<0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
20	Chromium (as Cr ⁻⁶), mg/l	< 0.01	<0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02	Ф.2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
21	Copper (as Cu), mg1	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	◆0.02	<0.02	<0.02
22	Zinc (as Zn) mg1	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	40.05	40.05	25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
23	Iron (as Fe), mg/l	0.38	0.4	0.21	0.61	0.7	0.6	0.51	0.7	0.62	0.39	0.64	0.69	0.49	0.49	0.75	0.49	0.8
24	STREAM FLOW RATE (m³/sec)	3.789	1.895	0.568	0.892	1.448	0.843	1.598	1.594	0.648	1.238	0.372	0.721	0.639	0.768	0.829	0.281	0.827

Sr. Menager (Geology)-Environment Panchpatmali Bauxite Mine Panchpatmali Bauxite Mine NALCO, Damanlodi-763008

Stream water Quality Analysis July 2025

SL.									Samp	ling Statio	on Code	H. F.					SE S	
NO	Parameters	G-1	G-2	G-3	G-4	G-5	G-6	G-7	G-8	G-9	G-10	G-11	G-12	G-13	G-14	G-15	G-16	G-17
		Litigoda	Jholaguda	Bhitara Bhejaput	Barigurha	Kapsiput	Litaputta	Murdagurh 2	Gaurhagud 2	Tenguligur ha	Kakirgum a	Tentulipad ar	Keler	Kusumagur ha	Kirajhola	Rangapani	Pansaputa	Balipet
1	Temp (*C)	24.4	25.1	25.2	24.8	25.18	24.1	24.1	24.8	25.3	25.1	24.8	24.7	24.9	25.1	25.3	24.6	24.2
2	pH Value	6.72	6.62	6.72	6.72	6.63	6.63	6.78	6.76	6.81	6.72	6.67	6.72	6.85	6.74	6.71	6.81	6.69
3	Dissolve Oxygen, mg/l	6.8	6.8	6.7	6.7	6.7	6.7	6.8	6.6	6.7	6.7	6.9	6.8	6.7	6.5	6.4	6.3	6.7
4	Total Dissolved Solids, mg/1	50	50	24	34	42	28	34	26	34	42	42	30	34	26	26	24	40
5	Total Hardness, (as CaCO ₃), mg/l	48	40	24	32	32	20	32	12	22	36	32	28	20	8	20	12	24
6	Suspended solids mg/l	4	6	0.5	Q.5	6	4.5	Q.25	4.5	4	6	Q.5	6	4	0.5	4	4.5	4.5
7	B.O.D mg/l 3 days at 27°C	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
8	Nitrate (as NO3), mg1	0.259	<0.05	40.05	4 .05	<0.05	Q.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	4 0.05	<0.05	<0.05	<0.05	<0.05
9	Chloride as CI – mg·l	18.01	16.01	12.01	10.01	10.01	10.01	8	6	6	6	6	6	6	6	10.01	6	4
10	Sulphate (as SO4), mg/l	2.9	6.5	23	5.3	1.8	1.68	3.2	1.65	3.6	<1.0	3.9	3.4	1.23	2.8	3.3	6.52	3.7
11	Calcium (as Ca), mg·l	12.8	12.8	4.8	4.8	8	4.8	6.4	4.8	4.8	8	6.4	9.6	6.4	<1.0	<1.0	3.2	4.8
12	Magnesium (as Mg), mg/l	3.88	1.94	<1.0	4.86	2.91	1.94	<1.0	2.72	2.43	3.88	3.88	<1.0	1.45	1.94	<1.0	<1.0	2.91
13	Turbidity,(N.T.U.)	1	0.6	3	1	2.8	0.6	0.9	1	2	2	1.6	0.8	1.4	3.3	1.5	0.8	3.8
14	Fluoride as F , mg1	<0.1	<0.1	< 0.1	<0.1	< 0.1	40.1	0.11	0.5	0.35	0.16	<0.1	0.8	<0.1	0.3	0.6	<0.1	0.12
15	Phenolic Compounds, (as CaHaOH), mg/l	<0.001	<0.001	< 0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
16	Arsenic (as As), mg1	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
17	Mercury (as Hg), mg/l	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	Ø.0005
18	Lead (as Pb), mg1	2.54	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
19	Cadmium (as Cd), mg1	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
20	Chromium (as Cr*), mg/l	< 0.01	<0.02	< 0.02	< 0.02	< 0.02	40.02	<0.02	<0.02	<0.2	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
21	Copper (as Cu), mg1	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
22	Zinc (as Zn) mg/1	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	Q.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
23	Iron (as Fe), mg/l	0.5	0.4	0.75	0.7	0.72	0.4	0.41	0.21	0.52	0.65	0.66	0.52	0.62	0.72	0.31	0.64	0.62
24	STREAM FLOW RATE (m³/sec)	3.804	1.198	0.555	0.882	1.446	0.833	1.602	1.59	0.644	1.235	0.364	0.721	0.636	0.765	0.824	0.287	0.824

Sr. Manager (Geology)-Environme Sr. Manager (Geology)-Environme Panchpatmall Bauxite Mine NALCO, Damankod-763008

Stream water Quality Analysis August 2025

SL.									Samp	ling Statio	on Code							
NO	Parameters	G-1	G-2	G-3	G-4	G-5	G-6	G-7	G-8	G-9	G-10	G-11	G-12	G-13	G-14	G-15	G-16	G-17
		Litigada	Jholaguda	Bhitara Bhejaput	Barigurha	Kapsiput	Litaputta	Mordagurh 2	Gauchagud a	Tengoligur ha	Kakirgum 2	Tentulipad ar	Keler	Kusumagur ha	Kirajhola	Rangapani	Pansaputa	Balipeta
1	Temp (^a C)	24.9	24.9	24.8	24.8	24.8	25.1	25	24.8	25.5	24.9	25	24.9	24.8	25.1	24.8	24.9	24.8
2	pH Value	6.81	6.42	6.38	6.19	6.41	8.13	6.64	7.45	8.01	6.76	6.76	6.7	6.9	6.8	6.8	6.7	6.8
3	Dissolve Oxygen, mg/l	6.7	6.6	6.9	6.4	6.8	6.8	6.7	6.8	6.9	6.8	6.2	6.4	6.7	6.8	6.9	6.4	6.7
4	Total Dissolved Solids, mg1	48	30	24	24	16	34	30	36	40	20	20	32	36	30	30	40	20
5	Total Hardness, (as CaCO ₃), mg/l	40	28	12	16	12	28	8	28	32	12	12	28	24	12	24	16	12
6	Suspended solids mg/l	4.5	2.5	6	0.5	45	4.5	0.5	4.5	4	0.5	Q.5	6	4	3.6	4	4.2	4.5
1	B.O.D mg1 3 days at 27°C	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
8	Nitrate (as NO3), mg/l	<0.05	<0.05	0.48	<0.05	<0.05	<0.05	0.41	<0.05	<0.05	<0.05	<0.05	<0.05	40.05	<0.05	<0.05	<0.05	<0.05
9	Chloride as CI – mg/l	6	4	2	4	4	2	2	2	2	4	2	4	6	6	10.01	4	6
10	Sulphate (as SO4), mg/l	1.9	1.71	<1.0	2.1	<1.0	3.4	2.64	2.4	<1.0	1.9	<1.0	3.2	1.24	1.9	3.2	4.1	6.52
11	Calcium (as Ca), mg/l	3.2	4.8	3.2	4.8	3.2	6.4	1.6	8	9.6	1.6	1.6	11.2	4.8	<1.0	6.4	3.2	3.2
12	Magnesium (as Mg), mg1	1.94	2.91	<1.0	<1.0	<1.0	2.91	<1.0	1.94	1.94	1.94	1.94	<1.0	2.91	2.91	1.94	1.94	2.13
13	Turbidity,(N.T.U.)	0.5	0.7	5	2	1	-1	1	2	2	2.8	<0.1	0.7	1.5	3	1	3	0.7
14	Fluoride as F, mg1	< 0.1	< 0.1	<0.1	4 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	0.6	<0.1	0.28	0.48	0.12	< 0.1
15	Phenolic Compounds, (as C ₈ H ₅ OH) ,mg/l	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	<0.001
16	Arsenic (as As), mg1	<0.001	0.001	<0.001	0.003	0.002	0.005	0.003	0.001	0.001	0.004	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
17	Mercury (as Hg), mg/l	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
18	Lead (as Pb), mg/l	<0.005	0.007	<0.005	<0.005	0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
19	Cadmium (as Cd), mg/l	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
20	Chromium (as Cr**), mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01
21	Copper (as Ct), mg/l	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	Ф.02	<0.02	<0.02	<0.02	<0.02
22	Zinc (as Zn) mg/l	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.17	< 0.05	0.08	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
23	Iron (as Fe), mg/l	1	1.4	0.12	0.9	0.5	0.2	0.5	0.5	0.6	0.3	0.61	0.5	0.62	0.5	0.62	0.62	0.32
24	STREAM FLOW RATE (m³/sec)	3.802	1.196	0.841	0.882	1.441	0.846	1.601	1.59	8.01	6.76	6.76	6.7	6.9	6.8	6.8	6.7	6.8

Samir-Fanjan Pattnatk
Samir-Fanjan Pattnatk
Sr. Manager (Geology)-Environmen
Sr. Manager (Geology)-Environmen
NALCO, Damenbott-78:3008

Stream water Quality Analysis September 2025

SL.									Samp	ling Statio	on Code	2						
NO	Parameters	G-1	G-2	G-3	G-4	G-5	G-6	G-7	G-8	G-9	G-10	G-11	G-12	G-13	G-14	G-15	G-16	G-17
		Litiguda	Iholaguda	Bhitara Bhejaput	Barigurha	Kapsiput	Litaputta	Murdagurh 2	Gaurhagud 2	Tenguligur ha	Kakirgum 2	Tentulipad ar	Keler	Kusumagur ha	Kirajhola	Rangapani	Pansaputa	Balipeta
1	Temp (°C)	25.1	24.9	25	25.2	24.7	24.9	25.2	25	24.8	25	25	24.9	24.9	24.9	24.8	24.9	24.8
2	pH Value	6.88	6.51	6.51	6.22	6.4	8.16	6.7	7.5	8.11	6.81	6.8	6.8	6.72	6.78	6.81	6.7	6.72
3	Dissolve Oxygen, mg/l	6.7	6.5	6.8	6.5	6.7	6.8	6.8	6.7	6.9	6.8	6.4	6.4	6.8	6.8	6.7	6.5	6.8
4	Total Dissolved Solids, mg/l	50	32	24	26	18	36	32	36	34	22	22	32	36	30	32	42	28
5	Total Hardness, (as CaCO _s), mg/l	36	32	12	20	12	32	12	24	32	16	16	24	24	12	24	20	12
6	Suspended solids mg/l	Q.5	4.5	6	0.5	0.5	Q.5	Q.5	0.5	4	Q.5	0.5	6	4.2	3.6	4	4.2	4.5
1	B.O.D mg1 3 days at 27°C	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
8	Nitrate (as NO3), mg/l	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.37	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
9	Chloride as CI - mg/l	4	6	4	4	6	4	2	2	2	2	2	4	6	6	12.01	4	6
10	Sulphate (as SO4), mg/l	2.2	1.9	<1.0	2.6	<1.0	4.1	3	2.64	<1.0	1.1	1.2	3	1.23	1.9	3.4	4,4	7.1
11	Calcium (as Ca), mg/l	6.4	6.4	1.6	3.2	3.2	6.4	3.2	6.4	11.2	3.2	3.2	8	6.4	1.6	6.4	4.8	3.2
12	Magnesium (as Mg), mg/l	4.86	3.88	1.94	2.91	<1.0	3.88	<1.0	1.94	<1.0	1.94	1.94	<1.0	1.94	1.94	1.94	1.94	2.13
13	Turbidity,(N.T.U.)	0.4	0.7	5.4	2.2	1.2	1	1.4	2	2	3	<0.1	0.7	1.6	3	1	3	<0.1
14	Fluoride as F , mg/l	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	0.28	<0.1	0.21	0.51	0.14	< 0.1
15	Phenolic Compounds, (as CaHeOH) ,mg/l	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
16	Arsenic (2s As), mg/l	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
17	Mercury (as Hg), mg/l	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
18	Lead (as Pb), mg/l	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
19	Cadmium (as Cd), mg/l	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
20	Chromium (as Cr ⁺⁶), mg/l	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01
21	Copper (25 Ct), mg/l	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
22	Zinc (as Zn) mg/l	<0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
23	Iron (as Fe), mg/l	0.9	1.3	0.16	0.9	0.5	0.22	0.5	0.7	0.84	0.4	0.72	0.52	0.64	0.53	0.71	0.74	0.44
24	STREAM FLOW RATE (m³/sec)	3.805	1.189	0.821	0.885	1.409	0.849	1.601	1.59	1.12	1.234	0.394	0.782	0.648	0.772	0.882	0.848	0.388

Sarriff Fartian Pattnark
Sarriff Fartian Pattnark
Sr. Manager (Geotogy) Environment
Sr. Manager (Geotogy) Environment
NALCO, Damaniodi-763008
NALCO, Damaniodi-763008

ANNEXURE-III

GROUND WATER QUALITY ANALYSIS AROUND PANCHPATMALI CENTRAL & NORTH BLOCK BAUXITE MINE (2025-26)

			For April	2025								BLOCK B					
SI.	Name of Tests	Permissible	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	GW-7	GW-8	GW-9	GW-10	GW-11	GW-12	GW-13	GW-14	GW-15
No		Limits	Metingi Village	Chhatamb a Village	Panasaput	Jhariapad ar	Tentulipad ar	Ichhapur	Mundagad ati	Bijaghati Village	Putraghati Village	Chararha Village	Kapsiput Village	Jambagur ha Village	Shriguda Village	Kakirigum a Village	Sorisha padar Village
1	,H at 30°C	6.5-8.5	6.9	6.9	6.8	6.8	6.8	6.8	6.9	6.8	6.8	6.8	6.9	6.9	6.9	6.8	6.8
2	D.O. (mg/l)		3.5	3.6	3.7	3.8	3.7	3.8	3.5	3.6	3.8	3.8	3.9	3.9	3.5	3.6	3.5
3	T.D.S (mg/1)	2000	2.98	6.9	9.4	6.55	8.2	9.12	3.73	7.93	9.14	7.45	8.22	7.7	1.89	6	1.85
4	Total Hardness, as CaCo;	600	84	38	48	11	48	44	120	128	40	40	48	36	88	60	88
5	Total Alkalinity (as CaCo _i) (mg/l)	600	40	52	44	44	64	60	84	32	56	56	56	36	68	56	20
6	B.O.D.	30	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
7	Nitrate as No ₃ (mg/l)	45	3.2	2.6	2.5	53.9	4.8	4.2	2.5	2.8	0.96	0.54	9.6	16.8	2.5	2.8	4.6
8	Chlorides as Cl (mg/l)	1000	44	12	16	84	12	4	92	108	4	4	4	4	56	4	60
9	Sulphate as SO ₄ (mg/l)	400	15	3	2	40	<1.0	3	27	30	<1.0	<1.0	<1.0	<1.0	2	1	2
10	Calcium as Ca (mg/l)	200	22	14	1	32	18	14	30	40	14	14	14	11	29	11	27
11	Magnesium as Mg (mg/l)	100	7	6	9	8	7	2	17	7	6	1	8	2	14	8	5
12	Turbidity (NTU)	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	15	<1.0	<1.0	<0.1	<0.1	<0.1
13	Fluoride as F (mg/1)	1.5	0.132	0.08	0.144	0.116	0.106	0.06	0.09	0.08	0.157	0.116	0.184	0.172	0.09	0.105	0.113
14	Phenlic compounds as C ₆ H ₅ OH (mg/l)	0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.00
15	Arsenic as As (mg/l)	0.01	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.0
16	Mercury as Hg (mg/l)	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.00
17	Lead as Pb (mg/l)	0.05	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0
1	8 Cadmium as Cd (mg/l)	0.01	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.00
19	Chromium Cr ⁻⁶ (mg/l)	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
20	Copper as Cu (mg/l)	1.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.0
21	Zinc as Zn (mg/l)	15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.0
22	Iron as Fe (mg/l)	1	0.243	0.226	0.293	0.302	0.358	0.367	0.552	0.326	0.262	0.842	0.282	0.386	0.422	0.23	0.305
23	Temperature in 0°		33°C	33°C	34 ⁶ C	34°C	32°C	32°C	34°C	34°C	34°C	33°C	30°C	30°C	32°C	32°C	32°C
24	Coliform (MPN)	ND in 100ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent

3r. Manager (George) Environment
Panchpalmali Bauxile Nine
NALCO, Demaniodi-763008

		For Augu	st 2025													0
Name of Tests	Permissible	GW-1	GW-2	GW-3	GW-4	GW-5	GW-6	GW-7	GW-8	GW-9	GW-10	GW-11	GW-12	GW-13	GW-14	GW-15
	Limits	Metingi Village	Chhatamb a Village	Panasaput	Jhariapad ar	Tentulipad ar	Ichhapur	Mundagad ati	Bijaghati Village	Putraghati Village	Chararha Village	Kapsiput Village		Shriguda	Kakirigum a Village	Sorisha padar Village
t 30°C	6.5-8.5	7.25	6.83	6.75	6.74	8.23	7.13	6.99	7.01	6.95	5.96	6.96	6.74	7.04	6.9	6.91
. (mg/l)		4	4.2	4.3	4.2	4.3	4.4	4	4.2	3.6	4.4	4.6	4.1	4.3	4.2	4.6
.S (mg/1)	2000	60	172	162	166	20	154	166	156	204	216	120	140	98	140	280
al Hardness, as	600	52	124	128	120	16	92	104	104	104	108	48	44	28	112	128
al Alkalinity (as o ₁) (mg/l)	600	33	110	103.4	107.8	11	94.6	94.6	103.4	24.2	35.2	52	26.4	48	84	81
.D.	30	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
rate as No. (mg/l)	45	0.34	0.09	0.2	<0.05	< 0.05	0.27	0.39	0.09	44.5	43.8	0.21	0.7	0.9	0.41	0.42
orides as Cl (mg/l)	1000	4	6	8	4	4	10.01	12.01	8	54.05	54.05	16.01	24.02	32.03	S	10.0
hate as SO ₄ (mg/l)	400	19.4	4.2	2.4	4.4	<1.0	12.4	10.9	12.4	18.4	8.1	10.9	2.4	4.4	2.4	2.8
cium as Ca (mg/l)	200	9.6	27.2	20.8	22.4	3.2	20.8	17.6	16	17.6	19.2	12.8	9.6	8	17.6	20.8
mesium as Mg 1)	100	6.8	13.6	18.4	15.5	1.9	0.8	14.5	15.5	14.5	14.5	3.88	4.86	1.94	16.52	18.4
bidity (NTU)	10	<0.1	<0.1	<0.1	<0.1	<0.1	0.8	<0.1	0.4	0.9	5	<0.1	1.8	<0.1	3	3
oride as F (mg/l)	1.5	0.1	0.14	0.12	0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
nlic compounds as I ₂ OH (mg/l)	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00
enic as As (mg/l)	0.01	0.001	0.002	0.004	0.001	0.003	0.006	0.002	0.005	0.005	0.006	<0.001	<0.001	<0.001	<0.001	<0.00
cury as Hg (mg/l)	0.001	<0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.00
d as Pb (mg/l)	0.05	< 0.005	< 0.005	< 0.005	0.005	< 0.005	< 0.005	0.006	< 0.005	< 0.005	0.009	<0.005	<0.005	<0.005	<0.005	<0.00
mium as Cd (mg1)	0.01	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00
omium Cr ⁻⁶ (mg/l)	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.0
per as Cu (mg/l)	1.5	<0.02	0.048	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.0
as Zn (mg/l)	15	0.377	0.24	< 0.05	0.38	<0.05	0.18	0.21	0.34	1.06	1.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.0
as Fe (mg/l)	1	0.07	0.12	0.24	<0.05	<0.05	0.17	0.98	0.9	0.3	0.17	0.24	<0.05	0.9	0.6	0.58
perature in 0°		24.8	24.8	24.2	24.2	24.2	24.8	24.8	24.6	24.2	24.8	24.8	24.8	24.8	24.8	23.8
form (MPN)	ND in 100ml	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
form (MPN)		L				Norm as per IS 10500:2012					The state of the s		The state of the s	A COSEIN COSEIN COSEIN	The state of the s	ADSERT ADSERT ADSERT ADSERT ADSERT ADSERT

Sr. Manager (Gashoy) Environment Panchpatmail Bauxile Mire NALCO, Damanicol 783008

ANNEXURE-IV

STATUS OF COMPLIANCE OF MEASURES TO BE TAKEN UP BY NALCO WITHIN THE PROJECT AREA OF PANCHPATMALI BAUXITE MINE (CENTRAL & NORTH BLOCK ML) AS PER APPROVED WILD LIFE MANAGEMENT PLAN

BLC	OCK ML)	AS PER APPROVED WIL	D LIFE MANAGEMENT PLAN
Sl.No.	Para ref.	Item of Work	Status as on 30.09.2025
1	3. b) i) 1.	Soil and moisture conservation in the ML area	Top soil excavated is used in concurrent reclamation of mined out area and is 100% utilised. All the rainfall in mined out area percolates into the ground without being discharged outside due to presence of in-situ barrier all around the mine. Besides rich growth of plantation and grass in the mined out area helps the soil to retain optimum moisture.
2	3. b) i) 2.	Grass seeding in hill slopes one year prior to plantation	Every year grass turfing with local grass is done in slopes in ML area. Grass turfing carried out during 2025-26 is 4000 sqr.mtr.
3	3. b) i) 3.	Water harvesting structure in the Central Location of the lease where normally stray cattle congregate 40 m length x 30 m width x 3 m depth at the central point.	Three Nos of water harvesting structures do exist over Panchpatmali Bauxite Mine to take care of the need of stray cattle and other wildlife.
4	3. b) i) 4.	Fire line inside already reclaimed areas prior to commencement of the season (January to June) 20 km	Every year around 1,45,000 sq.mtr area of fire line inside the reclaimed area as total area clearance to prevent spread of fire
5	3.b) i) 5.	Watch and ward (10 nos) to prevent spread of fire will be looked after by NALCO	Watch and ward @12 nos per day are being deployed to prevent spread of fire.
6	3. b) i) 6.	Signage depicting messages to workers to protect the planted species / their vernacular name and usages and their medicinal value.	Signage board on plantation & Environmental issues have been provided.
7	3 b) i) 7	Awareness campaign amongst the workers regarding the ecological / ethnic values of forest	Every year awareness campaign is being organized to spread awareness among Employees/Workers regarding the ecological / ethnic values of forest through World Environment Day, Vana Mahotsav Week, EMAP program, MEMC Week, etc. Besides villagers in the surrounding area are being distributed fruit bearing trees every year to create awareness about importance of tree plantation and they are also explained about having compassion towards wildlife for maintaining a healthy appropriate in the region
8	3. b)i) 8.	Solar Fencing around Red Mud Pond over 3.0 Kms.	maintaining a healthy ecosystem in the region. The red mud pond is located beyond the buffer zone of Panchpatmali Bauxite Mine. Further no elephant habitat exists in the core or buffer zone of Panchpatmali Bauxite Mine.

(P Mohanta)

Chief General Manager (Mines)

Chief General Manager (Mines)

Panchpatmali Bauxite Mines

NALCO, Damanjodi-763008

ANNEXURE-V AMBIENT NOISE LEVEL MEASUREMENT IN AND AROUND PANCHPATMALI CENTRAL & NORTH BLOCK BAUXITE MINE FOR 2025-26

SI	Monitoring station code & its direction	Category of area/Zone	Date	1	e level B(A)	Date		e level B(A)	Date	1	e level B(A)	Date		e level B(A)
				Day	Night		Day	Night		Day	Night		Day	Night
1	N1 Baiguda Village- SW	С	21.04.25	40.2	49.2	06.08.25	49.8	41.3						
2	N2 Bitiarguda Village- W	С	21.04.25	45.2	35.2	06.08.25	42.48	36.5						
3	N3 Goudguda Village- NW	С	21.04.25	45.1	41.8	06.08.25	45.1	41.8						
4	N4 Kakinguma Village- N	С	21.04.25	42.6	46.6	06.08.25	48	44.21						
5	N5 Upper Meeting Village- NE	С	21.04.25	51.8	52.2	06.08.25	52.4	43.1						
6	N6 Near Main Haul Road- E	A	21.04.25	40	51.8	06.08.25	51.4	45.48						
7	N7 Near Crusher House- SE	A	21.04.25	52.6	38.1	06.08.25	71.3	67.5						
8	N8 Near HEMM Main Building- SW	A	21.04.25	56.8	41.6	06.08.25	59	51.51						
9	N9 Roof Of Panchpatmali Bhawan- S	A	21.04.25	53.1	43.1	06.08.25	52.9	43.2						
10	N10 Near SMCP North Block-NE	A	21.04.25	55.3	45.1	06.08.25	55.6	45.8						

Norm			
Category	of area/zone	Limits in dB(A)	_eq
		Day time	Night time
(A)	Industrial area	75	70
(B)	Commercial area	65	55
(C)	Residential area	55	45
(D)	Silence zone	50	40

Samirand Rathant Agents

31. Marager Contained Rathant Agents

31. Marager Contained Rathant R

ANNEXURE-VI WASTE WATER ANALYSIS AT PANCHPATMALI CENTRAL & NORTH BLOCK BAUXITE MINE (2025-26)

SI.		-	_	_	_		WV										_	_	W							Ave	erage
lo. Parameter	NORM	Apr-25	May-2	Jun-25	Jul-25	Aug-25	Sep-25	Oct-25	Nov-25	Dec-25	Jan-26	Feb-26	Mar-26	Apr-25	May-2	Jun-2	Jul-25	Aug-25	Sep-25	Oct-25	Nov-25	Dec-25	Jan-26	Feb-26	Mar-26	WW1	W
Temperature (°C)		32	24.2	24.2	24.3	24.9	24.8							32	24.2	24.1	24.2	24.9	24.9							25.733	25.
PH Value	5.5-9.0	7	5.02	5.6	5.62	5.62	5.7							7	6.26	6.3	6.7	7	7							5.760	6.
Dissolve Oxygen, mg/l	·	4	6.6	5.8	6.6	6.6	6.6							3.8	6.6	6.6	6.7	6.4	5.4							6.033	6.0
Total Dissolved	Ė	143	68	80	68	90	110							114	90	94	90	84	68							93.167	90.
Total Hardness (as CaCO ₃), mg/l	·	64	25	52	25	34	16							56	43	44	45	28	28							36.000	40.
Suspended Solids mg/l	100	<1.0	8	<2.5	8	10	12							<1.0	8	6.2	8.5	8.4	10							9.500	8.3
B.O.D mg/l 3 days at 27°C	30	28	15	12	15	12	18							<3.0	<1.0	4.0	<1.0	4	5	T					-	16.667	4
C.O.D mg/l	250	154	61	52	61	72	57.6							13	<5.0	<5.0	<5.0	9.6	14.6						1	76.267	12.
Nitrate (as NO3), mg/l		2.13	4.27	5.2	4.27	2.2	2.4							0.96	5.85	6.2	5.6	0.8	0.21							3.412	3.2
Chloride as Cl - mg/l		40	18.01	18	18	1.1	22							36	14.01	14	14	<1.0	8						1	19.522	17.
Sulphate (as 1 SO4), mg/l	•	4	8	8.2	8.8	3.2	1.8							1	19	18	19	4.8	<1.0							5.667	12.
Calcium (as Ca), mg/l	•	18	4.3	12.8	4.5	1.94	3.2							16	14.4	12.8	14.4	2.91	4.8							7.457	10.
Magnesium (as Mg), mg/l		5	3.45	4.86	3.55	0.21	1.94							4	1.7	2.91	1.7	<0.1	3.88							3.168	2.8
Fluoride as F, mg/l	2	0.37	<0.1	<0.1	<0.1	<0.5	0.22	-						0.244	0.140	0.2		<0.5	<0.1							0.296	0.1
Phenolic Compounds,	1	<0.01	<0.5	<0.5	<0.5	0.004	<0.5				100			<0.01	<0.5	€0.5	<0.5	0.01	<0.5							0.004	0.0
Arsenic (as As), mg/l	0.2	<0.05	<0.00 1	<0.00	<0.0 01	<0.000 5	<0.00 1							<0.05	<0.00 1	<0.00 1	<0.0 01	<0.00 05	<0.00							0.009	0.0
Mercury (as Hg), mg/l	0.01	<0.01	<0.00 05	<0.00 05	<0.0 005	<0.005	<0.00 05							0.01	<0.00 05	<0.00 05	<0.0 005	<0.00 5	<0.00 05						1	0.003	0.0
Lead (as Pb), mg/l	0.1	<0.01				<0.001	<0.00 5						•	0.01				<0.00	_						0	0.005	0.0
Cadmium (as Cd), mg/l	2	<0.01	<0.00 1	<0.00 1	<0.0 01	<0.01	<0.00 1						•	0.01	<0.00	<0.00	-	<0.01	<0.00 1						0	0.004	0.0
Chromium (as Cr ⁺⁶), mg/l	0.1	<0.05	<0.01	<0.01	<0.0 1	<0.02	<0.01						(0.05	€0.01	<0.01	<0.0 1	<0.02	<0.01						0	0.018	0.0
Copper (as Cu), mg/l			<0.02		<0.0 2	0.06	<0.02							0.05		<0.02	2		<0.02							0.03	0,0
Zinc (as Zn) mg/l			<0.05		<0.0 5	0.71	<0.05							0.05		<0.05	5								l'	0.15	0.9
Iron (as Fe), mg/l Oil and	3 10	0.46	<1.0	0.9 <1.0	<1.0	<1.0 5.62	<1.0							1.000	0.6	0.6	0.6	<1.0	5.82						0.	7924	2.0
grease	10	0.3	1.0	1.0	1.0	3.02	1.0								<1.0	<1.0	<1.0	7	<1.0						1	1.75	2.0
WW1-treated v	vater fro	m											W	/W2-tı	reated	water	from H	EMM .	area			N	IEM 1 rea	V			
* Parameters ar																able					9 1	0	200	aik			

Sr. Manager (Geotogy)-Environment Panchpatmali Bauxile Mine NALCO, Damaniodi-763008