

# NATIONAL ALUMINIUM COMPANY LIMITED (A Government of India Enterprise) PANCHPATMALI BAUXITE MINE Mines & Refinery Complex D A M A N J O D I – 763008 Dist. KORAPUT (ODISHA)

Ph-06853-268001, Fax-06853-268002/268003 Ref-NAL/MIN/CGM(Mines)/2025/82

Date: 29.10.2025

To,

The Deputy Director General of Forests (C), Ministry of Environment, Forest and Climate Change, Regional Office, A/3, Chandrasekaharpur, Bhubaneshwar-751023

Sub:- Submission of Six monthly compliance status report on Environmental Clearance conditions for the period 1st April 2025 to 30th September 2025 in respect of Panchpatmali South Block Bauxite Mine, NALCO.

Ref- (1) Env. Clearance Letter no. No. J-11015/78/2010-1A. II (M) Dt. 28-02-2011 from MoEF & CC, GOI.

(2) Env Clearance no. J-11015/78/2010-1A.II (M) Dt.26-10-2018 from MoEF &CC, GOI

Dear Madam/Sir,

Please find enclosed herewith the six monthly compliance reports against the condition of above referred Environmental Clearances for the period 1st April 2025 to 30th Sept 2025 in respect of Panchpatmali South block Bauxite Mine, NALCO. This is for your kind information and perusal please

Thanking you,

Encl- As above

Copy-

-Additional Secretery (IA)
Ministry of Environment & Forests & Climate Change
Govt of India, Indira Paryavaran Bhawan, Aliganj,
Jorbagh Road, New Delhi-110 003.

-The Member Secretery, (Central) State pollution Control Board, Odisha A/118, Nilakantha nagar, Bhubaneswar-751012

-The D.F.O. Koraput Division, Koraput - for kind information

-for kind information

Yours faithfully,

(P Mohanta)
Chief General Manager

Panchpatmali Bauxite Mines

NALCO, Damanjodi-763008

-for kind information

## STATUS OF COMPLIANCE TO THE CONDITIONS STIPULATED IN ENV. CLEARANCE FOR BAUXITE PRODUCTION @ 3.15 MTPY WITH RESPECT TO PANCHPATMALI SOUTH BLOCK BAUXITE MINE, NALCO

(Ministry Letter No. J-11015/78/2010-IA. II(M) Dt. 28-02-2011)

| Sl.No. | A. Special Conditions                                                                                                                                                                                                                                                                                                                                                                             | Status of Compliance as on 30.09.2025                                                                                                                                                                                                                                                                                                                                         |                                                                                                 |                                                                |                                                                                                  |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| I      | All the conditions stipulated by State<br>Pollution Control Board Odisha in their<br>Consent to Establish shall be effectively<br>implemented.                                                                                                                                                                                                                                                    | The consent to establish for 3.15 MTPY production capacity for S Block was obtained from SPCB, Odisha vide letter no. 16733/In NOC-6041, DTD. 21-11-2016. The operation project (South B has started operation from 22.5.2017. All the conditions prescribe SPCB, Odisha are being effectively implemented.  The consent to operate from State Pollution Control Board, Odish |                                                                                                 |                                                                |                                                                                                  |  |  |  |  |  |
| II     | The project proponent shall obtain Consent to Operate from the State Pollution Control Board and effectively implement all the conditions stipulated therein.                                                                                                                                                                                                                                     | operation of<br>4822 /IND-I<br>2837, which<br>are being im                                                                                                                                                                                                                                                                                                                    | South Block has b<br>l-CON-6387, Dtd. 3<br>is valid till 31.3.202<br>plemented.                 | een obtained vid<br>0-03-2024/ CON<br>6. All the condition     | e SPCB order No<br>SENT ORDER NO.<br>ons stipulated therein                                      |  |  |  |  |  |
| III    | The environmental clearance is subject to grant of forestry clearance. Necessary forestry clearance under the Forest (Conservation) Act,1980 for an area of 189.552 ha forest land involved in the project shall be obtained before starting mining operation in that area. No mining shall be undertaken in the forest area without obtaining requisite prior forest clearance.                  | for South Bl<br>No. 8-330/19<br>0091-2021-1<br>10F(Cons) 1                                                                                                                                                                                                                                                                                                                    | ock has already beer<br>983-FC (Pt-I) dated :<br>1640/FE&CC, Bhub<br>78/2015) respectivel       | n accorded by MC<br>20th July 2011 an<br>paneswar, dated<br>y. | 52 ha of forest land<br>DEF&CC vide Letter<br>Id No FE-DIV-FLD-<br>25 <sup>th</sup> January 2024 |  |  |  |  |  |
| IV     | The project proponent shall ensure that no natural watercourse and / or water resources are obstructed due to any mining operations. Adequate measures shall be taken while diverting seasonal channels emanating from the mine lease, during the course of mining operation.                                                                                                                     | operation is course. No                                                                                                                                                                                                                                                                                                                                                       | confined to hill top:                                                                           | shall in no way ol<br>mining area is al                        | lateau top. Mining<br>bstruct natural water<br>lowed to flow down<br>ral barriers.               |  |  |  |  |  |
| V      | The mining operations shall be confined to the hill tops only and restricted to above ground water table and it should not intersect the groundwater table. In case of working below the ground water table, prior approval of the Ministry of Environment and Forests and the Central Ground Water Authority shall be obtained, for which a detailed hydro-geological study shall be carried out | water table of                                                                                                                                                                                                                                                                                                                                                                | exists below 80 mtr.                                                                            | from the plateau<br>y 35 Mtrs from th                          | 010) that the ground<br>top. As the Mining<br>ne surface, there will<br>vater / aquifers.        |  |  |  |  |  |
| VI     | The top soil shall temporarily be stored at earmarked site(s) only and it should not be kept unutilized for long. The topsoil shall be used for land reclamation and                                                                                                                                                                                                                              | to be used fo                                                                                                                                                                                                                                                                                                                                                                 | soil was being remo<br>or concurrent land rec<br>een started to be reus<br>generated and storec | clamation and reha                                             | g stored temporarily<br>abilitation. However<br>from 2020-21.<br>are as follows.                 |  |  |  |  |  |
|        | plantation.                                                                                                                                                                                                                                                                                                                                                                                       | Year                                                                                                                                                                                                                                                                                                                                                                          | Top soil generated (MT)                                                                         | Top soil<br>utilized (MT)                                      | Top soil<br>stored/Closing<br>Balance (MT)                                                       |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                   | 2019-20                                                                                                                                                                                                                                                                                                                                                                       | 14050                                                                                           | 14050                                                          | Nil                                                                                              |  |  |  |  |  |
|        | 1 TE 1 1 TE 1                                                                                                                                                                                                                                                                                                                                                                                     | 2020-21                                                                                                                                                                                                                                                                                                                                                                       | 41,600                                                                                          | 41,600                                                         | Nil                                                                                              |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                   | 2021-22                                                                                                                                                                                                                                                                                                                                                                       | Nil                                                                                             | Nil                                                            | Nil                                                                                              |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                   | 2022-23                                                                                                                                                                                                                                                                                                                                                                       | Nil                                                                                             | Nil                                                            | Nil                                                                                              |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                   | 2023-24                                                                                                                                                                                                                                                                                                                                                                       | Nil                                                                                             | Nil<br>Nil                                                     | Nil<br>Nil                                                                                       |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                   | 2024-25                                                                                                                                                                                                                                                                                                                                                                       | Nil                                                                                             |                                                                |                                                                                                  |  |  |  |  |  |

Samir ranjan Pattnaik
Samir ranjan Pattnaik
Sr. Manager (Geology)-Environmer
Panchpatmail Bauxite Mine
NALCO, Damankoti-763008

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2025-26 as                                                                                                                                                                                                             | Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nil                                                                                                                                                                                                        | Nil                                                                                                                                                                                                         |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on<br>30.09.2025                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                            |                                                                                                                                                                                                             |
| <b>711</b> | The overburden (OB) generated shall be emporarily stacked in the identified sites for backfilling. Backfilling shall start from 2021-22 and there shall be no external over burden dumps. The entire excavated area shall be progressively reclaimed by backfilling and afforested. Monitoring and management of rehabilitated areas should continue until the vegetation becomes self-sustaining. Compliance status shall be submitted to the Ministry of Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | In the initial sta<br>20, overburden<br>stacked at desig<br>backfilling of the<br>is progressively<br>afforestation. The<br>till the vegetation<br>submitted to Mo                                                     | (Top soil + Late<br>gnated places, wh<br>he mined out area<br>reclaimed by the<br>plantation in the<br>on becomes self-s<br>OEF every six mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | erite) was being<br>nich has started<br>a from 2020-21.<br>backfilling and<br>e rehabilitated a<br>ustaining. Com-<br>onths.                                                                               | ree years i.e till 201 g excavated and w to be rehandled The entire excavat is rehabilitated w rea will be maintain pliance status is bei                                                                   |
|            | and Forest and its Regional Office located at Bhubaneswar on six monthly basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Year                                                                                                                                                                                                                   | OB generated (MT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OB utilized<br>(MT)                                                                                                                                                                                        | OB<br>stored/Closing<br>Balance (MT)                                                                                                                                                                        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2019-20                                                                                                                                                                                                                | 119950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nil                                                                                                                                                                                                        | 321000                                                                                                                                                                                                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2020-21                                                                                                                                                                                                                | 158500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57600                                                                                                                                                                                                      | 421900                                                                                                                                                                                                      |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2021-22                                                                                                                                                                                                                | 1,65,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,65,000                                                                                                                                                                                                   | Nil                                                                                                                                                                                                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2022-23                                                                                                                                                                                                                | 153390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 153390                                                                                                                                                                                                     | Nil                                                                                                                                                                                                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2023-24                                                                                                                                                                                                                | 150060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150060                                                                                                                                                                                                     | Nil                                                                                                                                                                                                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2024-25                                                                                                                                                                                                                | 150250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150250                                                                                                                                                                                                     | Nil                                                                                                                                                                                                         |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2025-26 as on<br>30,09,2025                                                                                                                                                                                            | 55000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55000                                                                                                                                                                                                      | Nil                                                                                                                                                                                                         |
|            | appropriate size shall be constructed around<br>the mine working, soil and mineral dumps<br>to prevent run off of water and flow of<br>sediments directly into the water bodies.<br>The water so collected shall be utilized for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | accumulated in the barrier and peripheral barrier any rain water                                                                                                                                                       | the sedimentation<br>reolates down the<br>ers have been pro-<br>carrying mud and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ponds cannot g<br>hrough porous<br>vided on the sid<br>d silt from goin                                                                                                                                    | gh drains. Rain wa<br>o out due to periphe<br>mined out surfact<br>les which will preve<br>g outside. Inside t                                                                                              |
|            | the mine working, soil and mineral dumps to prevent run off of water and flow of sediments directly into the water bodies. The water so collected shall be utilized for watering the mine area, roads, green belt development etc. the drains shall be regularly desilted, particularly after the monsoon, and maintained properly.  Garland drains, settling tanks and check dams of appropriate size, gradient and length shall be constructed around the mine pit, topsoil dumps and the mineral dumps to prevent run off of water and flow of sediments directly into the water bodies and sump capacity shall be designed keeping 50% safety margin over and above peak sudden rainfall (based on 50 years data) and maximum discharge in the area adjoining the mine site. Sump capacity shall also provide adequate retention period to allow proper settling of silt material. Sedimentation pits shall be constructed at the corners of the garland drains and | accumulated in a barrier and pe Peripheral barrie any rain water mine, sedimenta water through d mined out surfaground water. concurrent recla                                                                         | the sedimentation reolates down the rest have been procarrying mud and attion pits of adequations with natural face, the rain was a There will be untation method h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ponds cannot go<br>hrough porous<br>vided on the sic<br>d silt from goin<br>uate size are being<br>gradient. Due to<br>ter percolates cono waste dum<br>as been adopted                                    | o out due to periphe<br>mined out surfact<br>les which will preve                                                                                                                                           |
| X          | the mine working, soil and mineral dumps to prevent run off of water and flow of sediments directly into the water bodies. The water so collected shall be utilized for watering the mine area, roads, green belt development etc. the drains shall be regularly desilted, particularly after the monsoon, and maintained properly.  Garland drains, settling tanks and check dams of appropriate size, gradient and length shall be constructed around the mine pit, topsoil dumps and the mineral dumps to prevent run off of water and flow of sediments directly into the water bodies and sump capacity shall be designed keeping 50 % safety margin over and above peak sudden rainfall (based on 50 years data) and maximum discharge in the area adjoining the mine site. Sump capacity shall also provide adequate retention period to allow proper settling of silt material. Sedimentation pits shall be constructed at                                      | accumulated in barrier and pe Peripheral barrier any rain water mine, sedimenta water through d mined out surfiground water. concurrent recla pits will be clea water.  No retaining wanot be more the concurrent back | the sedimentation reolates down the rest have been procarrying mud and attion pits of adequations with natural face, the rain was affected by the rest of the rest | ponds cannot ghrough porous vided on the sid silt from goin uate size are being radient. Due to the percolates on waste dum as been adopted to maintain the state of the height of in OB excavated nation. | o out due to periphe<br>mined out surfact<br>les which will preve<br>goutside. Inside to<br>ing kept which collect<br>to porous nature of to<br>down to recharge to<br>ps or OB dumps<br>d. The sedimentati |

Samir ranjan Pattnaik
Samir ranjan Pattnaik
Sr. Manager (Gaology)-Environment
Panchpatmali Bauxile Mine
NALCO, Damanlodi-783008

that plantation is also carried out in the backfilled/reclaimed area. and the reclaimed area, around void roads Native species like Silver Oak, Jamun, Rose Apple, Guava, Mangos, etc. by planting the native species in Jackfruit, Tamarind , Karani, etc are being planted @ 2500 plants /ha consultation with the local DFO / Agriculture Department. The density of for development of the green belt in consultation with DFO. Further the the trees should be around 2500 plants per CPCB guideline for green belt development is also taken into account. ha. Green belt shall be developed all around the mining lease area in a phased At present plantation is going on for South Block. As on 30.9.2025 manner and shall be within first five years. the plantation carried out in different areas are as follows. (i) Mined out area: 27,567 (ii) Other areas like Safety zone and other barren land(Hill slope area/Conveyor Corrider/Access Road /KV Line Area): 635004 Total trees planted in South Block\_as on 30.9.2025 is 6,62,565. In addition to the above plantation, as on date Miyawaki plantation also carried out in Panchpatmali South Block with an area of 0.75 Ha with 7000 Nos of saplings. Regular water sprinkling is being done using self-propelled mobile Xi Effective safeguard measures such as water tankers. Regular water sprinkling shall be carried out in critical areas prone to air pollution Provision of PLC controlled Auto sprinkling system installed over and having high levels of particulate Permanent haul roads (4 km). matter such as around loading and unloading point and all transfer point. From January 2017, AAQ monitoring for South Block has been started Extensive water sprinkling shall be carried at 5 locations. These are A11 (View Point, South Block), A12 out on haul roads. It shall be ensured that (Putraghati Village), A13(Bhitara Bhejaput Village), A14(Lachumani the Ambient Air Quality parameters Village) and A15(Mundagahrati Village ). The AAQ monitoring conform to the norms prescribed by the Central Pollution Control Board in this results conform to the norms prescribed by CPCB. regard. The latest results of ambient air analysis are given at Annexure-I. The plateau top, where the mining operation is confined, stands out Xii The project authority shall implement about 300 mtr above the surrounding valley areas. The permanent suitable conservation measures to augment ground water table exists at a depth of below 80 mtr. ground water resources in the area in consultation with the Regional Director, At present, 2 nos. of rain water harvesting reservoirs have been Central Ground Water Board. developed atop the mines. The capacity of the two nos of ponds are as follows. Capacity of Decription SI No. storage in cum. 6156 Pond-no-1 6300 Pond no-2 2 3200 Pond no-3 Also, rooftop rainwater harvesting structures for the Administration Building, Mine Manager's Building and MVT centre have been provided to augment ground water recharging. Further, the method of Mining & the peripheral barrier all around will not allow the storm water from within the mining area to go outside valley areas. The water thus trapped, will percolate down & recharge the ground water. Further as per advice of CGWB, Bhubaneswar, a suitable agency (M/s Geoenvitech Research & Services Pvt Ltd, Bhubaneswar) appointed for carrying out a hydro-geological study for suggesting measures for rain water harvesting and augmentation of ground water resources. The report has been prepared and recommendations are

implemented.

Sr. Manager (Georgy) Environment
Sr. Manager (Georgy) Environment
NALCO, Damankod-183008

| xiii | Regular monitoring of ground water level and quality shall be carried out in and around the mine lease by establishing a network of existing wells and constructing new piezometers during the mining operation. The monitoring shall be carried out four times in a year, pre-monsoon (April-May), monsoon (August), Post-monsoon (November) and winter (January) and the data thus collected may be sent regularly to the Ministry of Environment and Forest and its Regional Office, Bhubaneswar, the Central Ground Water Authority and the Regional Director, Central Ground Water Board. If at any stage, it is observed that the ground water table is getting depleted due to the mining activity, necessary corrective measures shall be carried out. | by construction exists at a great the ground November at nos). Meting Tentulipadar Bijaghati Village, Kapitakiriguma villages come well as in the are given at a The paramete 10500:2012, water resource. | on of borewells. It was four eat depth i.e. below 80 mtr. water quality monitoring is ad January every year. The givillage, Chhatamba Village, Village, Ichhapur Village, lage, Putraghati Village, Pusiput Village, Jambagurha Village, and Sorishapadar Village, and Sorishapadar Village, South Block. For 2025-26 mnexure-II. | done during April, August, monitoring locations are (15 te, Jharhiapadar Village, Mundagarhati Village, ttraghati Village, Chararha Village, Shriguda Village, Ilage below the hills. These of Central and North Block as as on 30.09.2025, the results termissible values as per IS No adverse impact on the |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | water level.                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                   | 8 8                                                                                                                                                                                                                                                                                                           |
| xiv  | The project authorities shall practice suitable rainwater harvesting measures on long term basis and shall work out a detailed scheme in consultation with the Regional Director, Central Ground Water Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | about 300 m<br>ground water<br>At present,                                                                                                                                                                | tr above the surrounding<br>table exists at a depth of be<br>3 nos. of rain water har                                                                                                                                                                                                                                             | eration is confined, stands out valley areas. The permanent elow 80 mtr.  vesting reservoirs have been of the three nos of ponds are as                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SI No.                                                                                                                                                                                                    | Decription                                                                                                                                                                                                                                                                                                                        | Capacity of storage in cum.                                                                                                                                                                                                                                                                                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                         | Pond-no-1                                                                                                                                                                                                                                                                                                                         | 6156                                                                                                                                                                                                                                                                                                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                           | Pond no-2                                                                                                                                                                                                                                                                                                                         | 6300                                                                                                                                                                                                                                                                                                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\left[\begin{array}{c c}2\\3\end{array}\right]$                                                                                                                                                          | Pond no-3                                                                                                                                                                                                                                                                                                                         | 3200                                                                                                                                                                                                                                                                                                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Building ,M<br>provided to a<br>Further, the r<br>not allow the<br>valley areas,<br>the ground w<br>Further as pe                                                                                         | ine Manager's Building a<br>ugment ground water rechannethod of Mining & the per-<br>estorm water from within<br>The water thus trapped, water.                                                                                                                                                                                   | ctures for the Administration and MVT centre have been urging.  ripheral barrier all around will the mining area to go outside ill percolate down & recharge eswar, a suitable agency (M/s t. Ltd., Bhubaneswar.) was                                                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | appointed for<br>measures for<br>resources. The<br>implemented                                                                                                                                            | or carrying out a hydro-ge<br>rain water harvesting and a<br>he report has been prepar                                                                                                                                                                                                                                            | ological study for suggesting<br>augmentation of ground water<br>ed and recommendations are                                                                                                                                                                                                                   |
| xv   | The project proponent shall obtain necessary prior permission of the competent authorities for drawl of requisite quantity of water (surface water and ground water ) required for the project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | State Water I<br>28682/WR D<br>Stream.                                                                                                                                                                    | Resources Dept Govt of Od<br>htd. 11/12/2019 for drawal o                                                                                                                                                                                                                                                                         | of water from Jholaguda                                                                                                                                                                                                                                                                                       |
| xvi  | Vehicular emissions shall be kept under control and regularly monitored and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | At present me<br>at mine is co                                                                                                                                                                            | onitoring of exhaust emission                                                                                                                                                                                                                                                                                                     | on of all the vehicles operating hs through an outside agency                                                                                                                                                                                                                                                 |

Sr. Menager (Geology) Environment Sr. Menager (Geology) Environment Pancipatmall Bauxile Mine NALCO, Damanjodi-763008

|       | mineral. The mineral transportation within<br>the mine lease shall be carried out through<br>the covered trucks only and the vehicles<br>carrying the mineral shall not be<br>overloaded.                                                                                                                                                                                                                                                     | Measures are being taken for maintenance of vehicles used in mining operations and in transportation of mineral. The vehicles carrying the mineral are not overloaded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| xvii  | Blasting operation shall be carried out only during the daytime. Controlled blasting shall be practiced. The mitigative measures for control of ground vibrations and to arrest fly rocks and boulders should be implemented.                                                                                                                                                                                                                 | Blasting has not yet started. In future in case, blasting will be done during shift change over between 1.15PM to 2PM. No blasting will be done beyond day light hours. Further, controlled blasting will be practiced with use of NONELs for sequential blasting to reduce fly rocks, boulders & ground vibration. However there is a plan not to carry out any blasting in future.                                                                                                                                                                                                                                                                                                                                                                                         |
| xviii | Drills shall either be operated with dust extractors or equipped with water injection system                                                                                                                                                                                                                                                                                                                                                  | Drill are being operated with vaccum dust extraction system with provision of water injection for dust suppression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| xix   | Mineral handling area shall be provided with adequate number of high efficiency dust extraction system. Loading and unloading areas including all the transfer points should also have efficient dust control arrangements. These should be properly maintained and operated.                                                                                                                                                                 | Crushing & Conveying system is provided with dry fog system. Loading and unloading areas including all the transfer points have efficient dust control arrangements. These are properly maintained and operated. The conveyor to Alumina Refinery is completely covered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| XX    | Sewage treatment plant shall be installed for the colony. ETP shall also be provided for the workshop and wastewater generated during the mining operation                                                                                                                                                                                                                                                                                    | The Mine & Refinery combined township exists 20KM away at Damanjodi where sewerage treatment plant is provided whereas the mine is operating a zero discharge system for effluents where all the waste water is treated, analysed and reused for sprinkling on the haul road for dust suppression and plantation. Effluents from the Mechanical Workshop area is being channelized through well-designed oil-water separation tank where oil is collected and the clear water is collected in zero discharge sump. There is a canteen waste water disposal system (biological treatment unit) designed, constructed and maintained to treat the canteen waste water. All the treated waste water from canteen and HEMM workshop is used for horticulture & dust suppression. |
| xxi   | Pre-placement medical examination and periodical medical examination of the workers engaged in the project shall be carried out and records maintained. For the purpose, schedule of health examination of the workers should be drawn and following accordingly.                                                                                                                                                                             | Pre-placement medical examination and periodic medical examination is being done for all employees of South Block. For all eligible employees of South Block , periodical medical examinations are done & records thereof maintained. During April 2025-Sept 2025, 9 nos of employees have undergone periodical medical testing. No occupational diseases have been detected so far.                                                                                                                                                                                                                                                                                                                                                                                         |
| xxii  | Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc. the housing may be in the form of temporary structures to be removed after the completion of the project.                                                                                         | All construction laborers /workers come from nearby villages and hence no housing is required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| xxiii | The project proponent shall take all precautionary measure during mining operation for conservation and protection of endangered flora and fauna found in the study area. Action plan for conservation of flora and fauna shall be prepared and implemented in consultation with the State Forest and Wildlife Department.  Necessary allocation of funds for implementation of the conservation plan shall be made and the fund so allocated | Site specific wild life conservation plan has been approved by PCCF (Wild life). Bhubaneswar vide letter no.FWL-C-SSP-273/2010/9639 dated 09-11-2010 with a financial implication of Rs 10.43 Cores.  The aforesaid amount has already been deposited in Adhoc- CAMPA by NALCO, for implementation of the plan. (Rs 8.15 Crore on 03.12.2010 and Rs 2.28 Crore on 30.3.2011, paid through DD & RTGS, respectively. The conservation measures suggested are under process of implementation. The copy of action plan has been submitted to MoEF&CC vide letter No. NAL/MIN/GM(Mines)2017/630, Dtd.                                                                                                                                                                            |

Sr. Managar (Gaotogy) Environment Panchostmall Bauxite Mine NALCO, Damaniodi 763008

|      | shall be included in the project cost. A copy of action plan shall be submitted to the Ministry of Environment and Forest and its Regional Office, Bhubaneswar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.9.2017. The status of implementation of conservation measures are given in <b>Annexure-III</b> .                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| xxiv | Digital processing of the entire lease area using remote sensing technique shall be carried out regularly once in three years for monitoring land use pattern and report submitted to Ministry of Environment and Forests and its Regional Office, Bhubaneswar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A digital land-use map (shape file) as on 31.3.2024 has been submitted to MoEF&CC, Bhubaneswar on 18th November 2024 vide mail.                                                                                                                                                                                                                                                                                                                                                                               |
| XXV  | The critical parameters such as RSPM (particulate matter with particle size less than 10 µm i.e PM10) and Nox in the ambient air within the impact zone, peak particle velocity at 300 m distance or within the nearest habitation, whichever is closer shall be monitored periodically. Further the quality of discharge water shall also be monitored.[TDS, DO.pH, and Total suspended solids (TSS)]. The monitored data shall be uploaded on the website of the company as well as displayed on a display board at the project site at a suitable location near the main gate of the company in the public domain. The circular No J-20012/1/2006-IA.II(M) dtd. 27.5.2009 issued by the Ministry of Environment & Forests, which is available on the website of the Ministry www.envfor.nic.in shall also be referred in this regard for its compliance. | The ambient air quality in and around the Panchpatmali South Block Bauxite Mine is measured at 5 locations every month for RSPM, Nox and SO <sub>2</sub> . The treated waste water from canteen and oil water separator are analysed as per general waste discharge standards every month. The results are well within the prescribed parameters. The data is being uploaded in company website <a href="www.nalcoindia.com">www.nalcoindia.com</a> along with half yearly status of environmental clearance. |
| xxvi | A Final Mine Closure Plan along with details of Corpus Fund shall be submitted to the Ministry of Environment & Forests 5 years in advance of final mine closure for approval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | These shall be submitted to the Ministry of Environment & Forests 5 years in advance of final mine closure for approval.                                                                                                                                                                                                                                                                                                                                                                                      |
| В    | GENERAL CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| i    | No change in mining technology and scope of working should be made without prior approval of the Ministry of Environment & Forests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The user agency (NALCO) undertakes that there shall be no change in technology and scope of work without prior approval from MoEF&CC.                                                                                                                                                                                                                                                                                                                                                                         |
| ii   | No change in the calendar plan including excavation, quantum of mineral bauxite and waste should be made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The user agency (NALCO) undertakes that there shall be no change in calendar plan including excavation, quantum of Bauxite, Waste/OB generation of work without prior approval from competent authority.                                                                                                                                                                                                                                                                                                      |
| iii  | At least four ambient air quality-<br>monitoring stations should be established<br>in the core zone as well as in the buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The ambient air quality in and around the Panchpatmali South Block Bauxite Mine is measured at 5 locations every month for PM2.5, PM10, Nox and SO <sub>2</sub> and CO.                                                                                                                                                                                                                                                                                                                                       |
|      | zone for RSPM( particulate matter with particle size less than 10 µm i.e PM10)&Nox monitoring. Location of the stations should be decided based on the meteorological data, topographical features and environmentally and ecological sensitive targets and frequency of monitoring should be undertaken in consultation with the State Pollution Control Board.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| iv   | Data on ambient air quality [RSPM (particulate matter with particle size less than 10 µm i.e PM10)&Nox ] should be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Data on air quality for the present mining operations is being collected once in every month. Records submitted to statutory authorities once in six months.                                                                                                                                                                                                                                                                                                                                                  |

Sr. Manager (Geology)-Environment Sr. Manager (Geology)-Environment NALCO, Damaniod-763008

|      | regularly submitted to the Ministry of Environment and Forests including its Regional office located at Bhubaneswar and the State Pollution Control Board / Central Pollution Control Board once in six month.                                                                                                                                                             | From January 2017, AAQ monitoring for South Block has been started at 5 locations. These are A11 (View Point,South Block), A12 (Putraghati Village), A13(Bhitara Bhejaput Village), A14(Lachumani Village) and A15(Mundagahrati Village). The AAQ monitoring results conform to the norms prescribed by CPCB.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| v    | Fugitive dust emissions from all the sources should be controlled regularly. Water spraying arrangement on haul roads, loading and unloading and at transfer points should be provided and properly maintained.                                                                                                                                                            | The latest results of ambient air analysis are given at Annexure-I.  Water spraying on haul road is being carried out with mobile sprinklers and fixed sprinklers. Loading points of crusher house is provided with dry fog system. Transportation of Bauxite ore is being carried out through a cable belt conveyor provided with hood all along. One fog cannon has been deployed near stockpile for suppression of dust.                                                                                                                                                                                                                                                                                                                         |
| vi   | Measures should be taken for control of noise levels below 85 dBA in the work environment. Workers engaged in operations of HEMM, etc. should be provided with ear plugs / muffs.                                                                                                                                                                                          | Noise monitoring in the present work environment is taken up once every year in the existing work areas. The results are within prescribed norm. Workers are provided with ear plugs /muffs. Besides ambient noise level is also measured at 13 locations. Ambient Noise level monitoring for 2025-26 is available at annexure-IV.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| vii  | Industrial waste water (workshop and waste water from the mine) should be properly collected, treated so as to conform to the standards prescribed under GSR 422 € dated 19 <sup>th</sup> May, 1993 and 31 <sup>st</sup> December 1993 or as amended from time to time. Oil and grease trap should be installed before discharge of workshop effluents.                    | The Mine is operating a zero discharge system for effluents where all the waste water is treated, analysed and reused for sprinkling on the haul road for dust suppression and plantation. Effluents from the Mechanical Workshop area is being channelized through well-designed oil-water separation tank where oil is collected and the clear water is collected in zero discharge sump. There is a canteen waste water disposal system (biological treatment unit) designed, constructed and maintained to treat the canteen waste water. All the treated waste water from canteen and HEMM workshop is used for horticulture & dust suppression. The treated waste water from canteen and HEMM workshop area are analysed before being reused. |
|      |                                                                                                                                                                                                                                                                                                                                                                            | The analysis results for 2025-26 are available at <b>Annexure-V</b> .  The above treated water is completely reused without discharging outside.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| viii | Personnel working in dusty areas should wear protective respiratory devices and they should also be provided with adequate training and information on safety and health aspects.  Occupational health surveillance programme of the workers should be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed | For South Block mine, all employees and contract workers are provided with protective devices. Regular training programmes are held in MVT Center on health and safety aspects for contract workers as well as employees.  Pre-placement medical examination and periodic medical examination is being done for all employees of South Block. For all eligible employees of South Block, periodical medical examinations are done & records thereof maintained. During April 2025-Sept 25, 9 nos of employees have undergone periodical medical testing. No occupational                                                                                                                                                                            |
|      |                                                                                                                                                                                                                                                                                                                                                                            | diseases have been detected so far.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ix   | A separate environmental management cell with suitable qualified personnel should be set-up under the control of a Senior Executive, who will report directly to the Head of the Organization.                                                                                                                                                                             | A Separate Environmental Management Cell being headed by SM(Geo)-Env, who is reporting directly to CGM(Mines), exists for management of environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| x    | The funds earmarked for environmental protection measures should be kept in separate account and should not be diverted for other purpose. Year wise expenditure should be reported to the Ministry of Environment and Forests and its Regional Office located at Bhubaneswar                                                                                              | Being a public sector, the system does not allow for creating a separate account for environmental protection measures. However adequate fund is provided under the budget of executing departments for installation and maintaining various pollution control measures. The fund earmarked for environmental protection measures is never diverted for any other purpose. Adequate fund is always allocated to meet the capital & recurring expenses to implement the environmental control measures inclusive of plantation. Many expenditures for Central and North Block and South Block on environment are carried                                                                                                                             |

Sr. Manager (Geology)-Environment Panchpatmali Bauxile Mine Panchpatmali Bauxile Mine NALCO, Damaniodi-763008

|     |                                                                                                                               | Bauxi<br>a. Ca<br>20                                                                                                             | ite Mine for the l                                                                             | last three years a<br>nvironmental Po  | Ilution control in                                   |                                |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|--------------------------------|--|--|--|--|--|
|     |                                                                                                                               | S.<br>No                                                                                                                         | Activity                                                                                       | 2923-24<br>(Rs)                        | 2024-25                                              | 2025-26 as<br>on<br>30.09.2025 |  |  |  |  |  |
|     |                                                                                                                               | 1.                                                                                                                               | Backfilling<br>and land<br>reclamation*                                                        | 111,15,237.33                          | 11,253,744.00                                        | 3,462,212.00                   |  |  |  |  |  |
|     |                                                                                                                               | 2.                                                                                                                               | Environmental<br>Pollution<br>Control                                                          | 11,61,866.83                           | 13.25,229.00                                         | 1,155,883.00                   |  |  |  |  |  |
|     |                                                                                                                               | 3.                                                                                                                               | Plantation and<br>Horticulture                                                                 | 15,43,866,00                           | 23,33,572.00                                         | 1,167,284.00                   |  |  |  |  |  |
|     |                                                                                                                               | 4                                                                                                                                | Operation and<br>maintenance<br>of Water<br>Sprinkling<br>system & zero<br>discharge<br>system | 1.70,009.09                            | 6,00,973.00                                          | 426,429.00                     |  |  |  |  |  |
|     |                                                                                                                               |                                                                                                                                  | Total                                                                                          | 1,39,90,979.75                         | 1,55,13,519.00                                       | 6,211,808.00                   |  |  |  |  |  |
| xi  | The project authorities should inform to                                                                                      | proj                                                                                                                             | oortionate cost le<br>erial as compared                                                        | for diesel incur<br>d to the total exc | on cost is calculared in handling cavation.          | of overburder                  |  |  |  |  |  |
| XI. | the Regional Office located at Bhubaneswar regarding date of financial                                                        | The MoEF&CC Regional Office shall be kept informed as required.  NALCO undertakes that all co-operations will be extended to the |                                                                                                |                                        |                                                      |                                |  |  |  |  |  |
| i   | closures and final approval of the project<br>by the concerned authorities and the date<br>of start of land development work. |                                                                                                                                  |                                                                                                |                                        |                                                      |                                |  |  |  |  |  |
| xii | closures and final approval of the project<br>by the concerned authorities and the date                                       | office<br>by fur                                                                                                                 | rs of the Regiona<br>mishing requisite                                                         | al Office of the le data. informati    | rations will be of Ministry located on/ monitoring r | at Bhubaneswareports.          |  |  |  |  |  |

| xiv   | A copy of clearance letter shall be marked to concerned Panchyat /ZilaParishad/ Municipal corporation, Urban local body and the Local NGO, if any, from whom suggestion / representation has been received while processing the proposal.  The clearance letter shall also be put on the website of the company by the proponent.                                                                                                                                                                                                                                                                                                                                                        | No such suggestions / representation have been received from the Panchayat / local NGO, while processing the clearance proposal. The EC has been displayed in the website of NALCO. (www.nalcoindia.com). |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| xv    | The State Pollution Control Board should<br>display a copy of the clearance letter at the<br>Regional office, District Industry Centre<br>and the Collector's office / Tahsildar's<br>Office for 30 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Complied.                                                                                                                                                                                                 |
| xvi   | The environmental statement for each financial year ending 31st March in Form-V is mandated to be submitted by project proponent to the concerned State Pollution Control Board as prescribed under Environment Protection Act, 1986, as amended subsequently, shall also be put on the website of the company along with status of compliance of environment clearance conditions and shall also be sent to the respective Regional Office of Ministry of Environment & Forests, Bhubaneswar by e-mail.                                                                                                                                                                                 | The environment statement for South Block was sent for the year 2024-25 to State Pollution Control Board, Odisha on 3rd September 2025 and is also displayed in NALCO's website.                          |
| xvii  | The project authorities should advertise at least in two local newspapers of the district or state in which the project is located and widely circulated, one of which shall be in the vernacular language of the locality concerned, within 7 days of the issue of the clearance letter informing that the project has been accorded environmental clearance and a copy of the clearance letter is available with the State Pollution Control Board and also at web site of the Ministry of Environment and Forest at <a href="http://envfor.nic.in">http://envfor.nic.in</a> and a copy of the same should be forwarded to the Regional Office of the Ministry located at Bhubaneswar. | Complied.                                                                                                                                                                                                 |
| xviii | Plantation of saplings shall be carried out in the earmarked 33% greenbelt area as a part of the tree plantation campaign "Ek Ped Maa Ke Naam" and the details of the same shall be uploaded in the MeriLiFE Portal (https://merilife.nic.in)                                                                                                                                                                                                                                                                                                                                                                                                                                            | Nalco has been registered under National Meri Life portal and the Tree plantation status has been uploaded along with Observation of World Environment day as Mission life action report.                 |

(P Mohanta) Chief General Manager(Mines)

> PURUSOTTAM MOHANTA Chief General Manager (Mines) Panchpatmali Bauxite Mines NALCO, Damanjodi-763008

# STATUS OF COMPLIANCE TO THE CONDITIONS STIPULATED INAMENDED ENV. CLEARANCE FOR INSTALLATION OF OVERLAND CONVEYOR FOR TRANSPORTATION OF BAUXITE PRODUCTION AND CHANGE IN MINING EQUIPMENT/MACHINERIES FOR SIZING IN PANCHPATMALI SOUTH BLOCK BAUXITE MINE, NALCO

(Ministry Letter No. J-11015/78/2010-1A. II(M) Dt. 26-10-2018)

| Sl.No. | Additional Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Status of Compliance as on 31.09.2025                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| i      | Amendment of Environmental Clearance will not be operational till such time the Project Proponent complies with all the statutory requirements and judgment of Hon'ble Supreme Court dated the 2 <sup>nd</sup> August 2017 in Writ Petition (Civil) No. 114 of 2014 in the matter of Common Cause versus Union of India and Ors                                                                                                                                                                                                                                                                                                                                      | es<br>of<br>it                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| ii     | The Department of Mining & Geology, State Government shall ensure that mining operation shall not commence till the entire compensation levied, for illegal mining paid by the Project Proponent through their respective Department of Mining & Geology in strict compliance of judgment of Hon'ble Supreme Court dated the 2 <sup>nd</sup> August 2017 in Writ Petition (Civil) No. 114 of 2014 in the matter of Common Cause versus Union of India and Ors.                                                                                                                                                                                                       | Noted. No compensation has been levied on Panchaptmali South Block Bauxite Mine for illegal mining.                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| iii    | The Project Proponent shall install online Ambient Air Quality Monitoring System and there should be system for display of digital AAQ data within 03 months at least at three locations as per wind direction. Online provisions of pH and turbidity meters at discharge points of STP and ETP and also at water storage ponds in the mining area may be made. Project Proponent should display the result digitally in front of the main Gate of the mine site.                                                                                                                                                                                                    | Three nos of online ambient air quality monitoring station have been procured and installed in the core zone and buffer zone of the mine.  The waste water from canteens and vehicle wash areas are treated and reused for dust suppression purpose inside Mines and are not discharged outside. Hence installation of online pH and turbidity meters are not applicable in our case. |  |  |  |  |  |
| iv     | Proponent shall appoint an Occupational Health Specialist for Regular and Periodical medical examination of the workers engaged in the Project and maintain records accordingly; also, Occupational health check-ups for workers having some ailments like BP, diabetes, habitual smoking, etc. shall be undertaken once in six months and necessary remedial/preventive measures taken accordingly. The Recommendations of National Institute for Mine workers shall be implemented; The prevention measure for burns, malaria and provision of anti-snake venom including all other paramedical safeguards may be ensured before initiating the mining activities. | The PME of all employees for specified diseases is carried out regularly. For all eligible employees of South Block, periodical medical examinations are done & records thereof maintained. During April 2025-Sept 2025, 9 no's of employees have undergone periodical medical testing. No occupational diseases have been detected so far.                                           |  |  |  |  |  |
| v      | Project Proponent shall run an awareness campaign on sanitation for women and utilization of Sanitary Napkin and also to distribute the Sanitary Napkin/pads to the women and provide the training for proper disposal.                                                                                                                                                                                                                                                                                                                                                                                                                                              | Regular awareness is carried out in surrounding villages including women regarding good sanitation practices under Swachh Bharat Mission. Sanitary kits/napkins are being disbursed periodically.                                                                                                                                                                                     |  |  |  |  |  |

(P Mohanta)

Chief General Manager(Mines)

PURUSOTTAM MOHANTA Chief General Manager (Mines) Panchpatmali Bauxite Mines NALCO, Damanjodi-763008

#### ANNEXURE-I AMBIENT AIR QUALITY ANALYSIS AT PANCHPATMALI SOUTH BLOCK BAUXITE MINE NALCO (2025-26)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | (2025-26) |        |        |        |        |        |        |        |        |        |        |        | Mar'26 | 1     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| Monitoring station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Parameter                   | Norm      | Apr'25 | May'25 | Jun'25 | Jul'25 | Aug'25 | Sep'25 | Oct'25 | Nov'25 | Dec'25 | Jan'26 | Feb'26 | Mar'26 | Avg   |
| 1 A11 (View point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RPM (µg / m3)               |           |        |        |        |        |        |        |        |        |        |        | 7      |        |       |
| South Block)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PM 2.5(60µg/m3)             | 60        | 29.4   | 26.79  | 34.05  | 30.05  | 22.67  | 28.33  |        |        |        |        |        |        | 28.5  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PM10(100µg/m3)              | 100       | 52.3   | 61.09  | 57.51  | 51.01  | 51.51  | 45.42  |        |        |        |        |        |        | 53.1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NRPM (µg/m3)                |           | 56.3   | 32.38  | 40.51  | 40.86  | 36.61  | 36.76  |        |        |        |        |        |        | 40.5  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPM(µg/m3)                  |           | 108.6  | 93.46  | 98.03  | 98.87  | 88.12  | 82.18  |        |        |        |        |        |        | 94.8  |
| 2 A12 (Putraghati<br>village)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SO <sub>2</sub> (80 μg /m3) | 80        | 11.4   | 7.65   | 7.65   | 8.99   | 6.35   | 6.95   |        |        |        |        |        |        | 8.1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NO <sub>X</sub> (80µg/m3)   | 80        | 19.2   | 12.52  | 14.72  | 14.85  | 11.64  | 10.43  |        |        |        |        |        |        | 13.8  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO (2 mg/m3)                | 2         | 0.7    | 0.61   | 0.57   | 0.51   | 0.51   | 0.45   |        |        |        |        |        |        | 0.56  |
| AND RESIDENCE OF THE PROPERTY OF THE PERSON | RPM (µg / m3)               |           |        |        |        |        |        |        |        |        |        |        |        |        |       |
| village)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PM 2.5(60µg / m3)           | 60        | 24.3   | 35.56  | 25.98  | 26.67  | 24.11  | 26.61  |        |        |        |        |        |        | 27.2  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PM10(100µg / m3)            | 100       | 44.5   | 74.38  | 52.65  | 57.72  | 49.9   | 41.52  |        |        |        |        |        |        | 53.4  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NRPM (µg/m3)                |           | 48.6   | 52.39  | 27.9   | 32.23  | 32.38  | 29.88  |        |        |        |        |        |        | 37.2  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPM(µg/m3)                  |           | 93.1   | 126.77 | 80.55  | 93.05  | 82.28  | 71.4   |        |        |        |        |        |        | 91.1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SO <sub>2</sub> (80 µg/m3)  | 80        | 8.4    | 9.31   | 9.31   | 7.62   | 5.95   | 7.76   |        |        |        |        |        |        | 8.0   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NO <sub>X</sub> (80μg/m3)   | 80        | 14.6   | 15.38  | 12.14  | 12.47  | 10.44  | 10.03  |        |        |        |        |        |        | 12.5  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO (2 mg/m3)                | 2         | 0.49   | 0.74   | 0.52   | 0.57   | 0.49   | 0.41   |        | -      |        |        |        |        | 0.54  |
| 3 A13 (Bhitara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RPM (µg / m3)               |           |        |        |        |        |        |        |        |        |        |        |        |        |       |
| Bhejaput village)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PM 2.5(60µg / m3)           | 60        | 26.3   | 27.92  | 25.64  | 26.79  | 23.73  | 26.18  |        |        |        |        |        |        | 26.05 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PM10(100µg / m3)            | 100       | 48.2   | 0.49   | 45.63  | 45.9   | 49.67  | 57     |        |        |        |        |        |        | 41.15 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NRPM (µg/m3)                |           | 51.7   | 38.97  | 35.8   | 36.02  | 38.97  | 37.39  |        |        |        |        |        |        | 39.83 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPM(µg/m3)                  |           | 99.4   | 88.64  | 81.43  | 81.92  | 88.64  | 94.39  |        |        |        |        |        |        | 89.07 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SO <sub>2</sub> (80 μg/m3)  | 80        | 9.5    | 6.64   | 6.64   | 6.38   | 5.76   | 5.31   |        |        |        |        |        |        | 6.71  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NO <sub>X</sub> (80μg/m3)   | 80        | 16.4   | 11.74  | 10.79  | 11.27  | 10     | 9.23   |        |        |        |        |        |        | 11.57 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO (2 mg/m3)                | 2         | 0.56   | 0.49   | 0.45   | 0.45   | 0.45   | 0.57   |        |        |        |        |        |        | 0.50  |
| 4 A14 (Lachumani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RPM (µg / m3)               |           |        |        |        |        |        |        |        |        |        |        |        |        |       |
| village)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PM 2.5(60µg / m3)           | 60        | 25.6   | 31.4   | 30.18  | 32.57  | 23.77  | 25.33  |        |        |        |        |        |        | 28.14 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PM10(100µg / m3)            | 100       | 47.2   | 53.07  | 53.05  | 57.25  | 43.21  | 42.13  |        |        |        |        |        |        | 49.32 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NRPM (µg/m3)                |           | 50.2   | 45.17  | 45.15  | 48.73  | 40.99  | 37.72  |        |        |        |        |        |        | 44.66 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPM(µg/m3)                  |           | 97.4   | 98.24  | 98.2   | 105.98 | 84.19  | 79.85  |        |        |        |        |        |        | 93.98 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SO <sub>2</sub> (80 μg/m3)  | 80        | 9.1    | 5.98   | 5.98   | 6.2    | 6.4    | 6.13   |        |        |        |        |        |        | 6.63  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NO <sub>X</sub> (80μg/m3)   | 80        | 15.3   | 11.32  | 10.88  | 11.74  | 10.06  | 9.63   |        |        |        |        |        |        | 11.49 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO (2 mg/m3)                | 2         | 0.54   | 0.53   | 0.53   | 0.57   | 0.43   | 0.42   |        |        |        |        |        |        | 0.50  |
| 5 A15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RPM (µg / m3)               |           |        |        |        |        |        |        |        |        |        |        |        |        |       |
| (Mundagahrati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PM 2.5(60µg / m3)           | 60        | 24.5   | 27.54  | 25.54  | 26.91  | 22.08  | 25.96  |        |        |        |        |        |        | 25.42 |
| Village)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PM10(100µg/m3)              | 100       | 45.6   | 52.75  | 46.97  | 50.04  | 41.88  | 50.46  |        |        |        |        |        |        | 47.95 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NRPM (µg/m3)                |           | 48.5   | 46.68  | 41.56  | 46.98  | 20.13  | 20.61  |        |        |        |        |        |        | 37.41 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SPM(µg/m3)                  |           | 94.1   | 99.43  | 88.53  | 110.02 | 62.01  | 71.07  |        |        |        |        |        |        | 87.53 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SO <sub>2</sub> (80 μg/m3)  | 80        | 8.2    | 7.86   | 7.86   | 7.69   | 5.77   | 5.67   |        |        |        |        |        |        | 7.18  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NO <sub>X</sub> (80μg/m3)   | 80        | 15.4   | 12.01  | 11.14  | 10.48  | 10.93  | 9.95   |        |        |        | 11     | ,      |        | 11.65 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO (2 mg/m3)                | 2         | 0.5    | 0.52   | 0.46   | 0.5    | 0.41   | 0.5    |        |        | 110    | 1 C    | SIK    |        | 0.48  |

ANNEXURE-II

|           |                                                                |                       | For April                  | ALITY A<br>2025               |                   |                         |                          |                         |                         |                              |                               |                              |                              |                                 |                              |                                 |                  |
|-----------|----------------------------------------------------------------|-----------------------|----------------------------|-------------------------------|-------------------|-------------------------|--------------------------|-------------------------|-------------------------|------------------------------|-------------------------------|------------------------------|------------------------------|---------------------------------|------------------------------|---------------------------------|------------------|
| SI.<br>No | Name of Tests                                                  | Permissible<br>Limits | GW-1<br>Metingi<br>Village | GW-2<br>Chhatamb<br>a Village | GW-3<br>Panasaput | GW-4<br>Jhariapad<br>ar | GW-5<br>Tentulipad<br>ar | <b>GW-6</b><br>Ichhapur | GW-7<br>Mundagad<br>ati | GW-8<br>Bijaghati<br>Village | GW-9<br>Putraghati<br>Village | GW-10<br>Chararha<br>Village | GW-11<br>Kapsiput<br>Village | GW-12<br>Jambagur<br>ha Village | GW-13<br>Shriguda<br>Village | GW-14<br>Kakirigum<br>a Village | GW-15<br>Sorisha |
|           |                                                                |                       |                            |                               |                   |                         |                          |                         |                         | - 7                          |                               |                              |                              |                                 |                              | - Tage                          | Village          |
| 1         | ,H at 30°C                                                     | 6.5-8.5               | 6.9                        | 6.9                           | 6.8               | 6.8                     | 6.8                      | 6.8                     | 6.9                     | 6.8                          | 6.8                           | 6.8                          | 6.9                          | 6.9                             | 6.9                          | 6.8                             | 6.8              |
| 2         | D.O. (mg1)                                                     | •                     | 3.5                        | 3.6                           | 3.7               | 3.8                     | 3.7                      | 3.8                     | 3.5                     | 3.6                          | 3.8                           | 3.8                          | 3.9                          | 3.9                             | 3.5                          | 3.6                             | 3.5              |
| 3         | T.D.S (mg/l)                                                   | 2000                  | 2.98                       | 6.9                           | 9.4               | 6.55                    | 8.2                      | 9.12                    | 3.73                    | 7.93                         | 9.14                          | 7.45                         | 8.22                         | 7.7                             | 1.89                         | 6                               | 1.85             |
| 4         | Total Hardness. as<br>CaCo;                                    | 600                   | 84                         | 38                            | 48                | 11                      | 48                       | 44                      | 120                     | 128                          | 40                            | 40                           | 48                           | 36                              | 88                           | 60                              | 88               |
| 5         | Total Alkalinity (as<br>CaCo <sub>1</sub> ) (mg/l)             | 600                   | 40                         | 52                            | 44                | 44                      | 64                       | 60                      | 84                      | 32                           | 56                            | 56                           | 56                           | 36                              | 68                           | 56                              | 20               |
| 6         | B.O.D.                                                         | 30                    | < 3.0                      | < 3.0                         | < 3.0             | < 3.0                   | < 3.0                    | < 3.0                   | < 3.0                   | < 3.0                        | < 3.0                         | < 3.0                        | < 3.0                        | < 3.0                           | < 3.0                        | < 3.0                           | < 3.0            |
| 7         | Nitrate as No. (mg1)                                           | 45                    | 3.2                        | 2.6                           | 2.5               | 53.9                    | 4.8                      | 4.2                     | 2.5                     | 2.8                          | 0.96                          | 0.54                         | 9.6                          | 16.8                            | 2.5                          | 2.8                             | 4.6              |
| 8         | Chlorides as Cl (mg/l)                                         | 1000                  | 44                         | 12                            | 16                | 84                      | 12                       | 4                       | 92                      | 108                          | 4                             | 4                            | 4                            | 4                               | 56                           | 4                               | 60               |
| 9         | Sulphate as SO <sub>4</sub> (mg/l)                             | 400                   | 15                         | 3                             | 2                 | 40                      | <1.0                     | 3                       | 27                      | 30                           | <1.0                          | <1.0                         | <1.0                         | <1.0                            | 2                            | 1                               | 2                |
| 10        | Calcium as Ca (mg1)                                            | 200                   | 22                         | 14                            | 1                 | 32                      | 18                       | 14                      | 30                      | 40                           | 14                            | 14                           | 14                           | 11                              | 29                           | 11                              | 27               |
| 11        | Magnesium as Mg<br>(mg1)                                       | 100                   | 7                          | 6                             | 9                 | 8                       | 7                        | 2                       | 17                      | 7                            | 6                             | 1                            | 8                            | 2                               | 14                           | 8                               | 5                |
| 12        | Turbidity (NTU)                                                | 10                    | <1.0                       | <1.0                          | <1.0              | <1.0                    | <1.0                     | <1.0                    | <1.0                    | <1.0                         | 2.2                           | 15                           | <1.0                         | <1.0                            | <0.1                         | <0.1                            | <0.1             |
| 13        | Fluoride as F (mg/l)                                           | 1.5                   | 0.132                      | 0.08                          | 0.144             | 0.116                   | 0.106                    | 0.06                    | 0.09                    | 0.08                         | 0.157                         | 0.116                        | 0.184                        | 0.172                           | 0.09                         | 0.105                           | 0.113            |
| 14        | Phenlic compounds as<br>C <sub>c</sub> H <sub>2</sub> OH (mg1) | 0.002                 | < 0.002                    | < 0.002                       | < 0.002           | < 0.002                 | < 0.002                  | < 0.002                 | < 0.002                 | < 0.002                      | < 0.002                       | < 0.002                      | < 0.002                      | < 0.002                         | < 0.002                      | < 0.002                         | < 0.00           |
| 15        | Arsenic as As (mg/l)                                           | 0.01                  | < 0.05                     | < 0.05                        | < 0.05            | < 0.05                  | < 0.05                   | < 0.05                  | < 0.05                  | < 0.05                       | < 0.05                        | < 0.05                       | < 0.05                       | < 0.05                          | < 0.05                       | < 0.05                          | < 0.05           |
| 16        | Mercury as Hg (mg/l)                                           | 0.001                 | < 0.001                    | < 0.001                       | < 0.001           | < 0.001                 | < 0.001                  | < 0.001                 | < 0.001                 | < 0.001                      | < 0.001                       | < 0.001                      | < 0.001                      | < 0.001                         | < 0.001                      | < 0.001                         | < 0.00           |
| 17        | Lead as Pb (mg/l)                                              | 0.05                  | < 0.01                     | < 0.01                        | < 0.01            | < 0.01                  | < 0.01                   | < 0.01                  | < 0.01                  | < 0.01                       | < 0.01                        | < 0.01                       | < 0.01                       | < 0.01                          | < 0.01                       | < 0.01                          | < 0.0            |
| 1         | 8 Cadmium as Cd (mg1)                                          | 0.01                  | < 0.003                    | < 0.003                       | < 0.003           | < 0.003                 | < 0.003                  | < 0.003                 | < 0.003                 | < 0.003                      | < 0.003                       | < 0.003                      | < 0.003                      | < 0.003                         | < 0.003                      | < 0.003                         | < 0.00           |
| 19        | Chromium Cr 6 (mg/l)                                           | 0.05                  | < 0.05                     | < 0.05                        | < 0.05            | < 0.05                  | < 0.05                   | < 0.05                  | < 0.05                  | < 0.05                       | < 0.05                        | < 0.05                       | < 0.05                       | < 0.05                          | < 0.05                       | < 0.05                          | < 0.05           |
| 20        | Copper as Cu (mg/l)                                            | 1.5                   | < 0.05                     | < 0.05                        | < 0.05            | < 0.05                  | < 0.05                   | < 0.05                  | < 0.05                  | < 0.05                       | < 0.05                        | < 0.05                       | < 0.05                       | < 0.05                          | < 0.05                       | < 0.05                          | < 0.0            |
| 21        | Zinc as Zn (mg 1)                                              | 15                    | < 0.05                     | < 0.05                        | < 0.05            | < 0.05                  | < 0.05                   | < 0.05                  | < 0.05                  | < 0.05                       | < 0.05                        | < 0.05                       | < 0.05                       | < 0.05                          | < 0.05                       | < 0.05                          | < 0.05           |
| 22        | Iron as Fe (mg 1)                                              | 1                     | 0.243                      | 0.226                         | 0.293             | 0.302                   | 0.358                    | 0.367                   | 0.552                   | 0.326                        | 0.262                         | 0.842                        | 0.282                        | 0.386                           | 0.422                        | 0.23                            | 0.305            |
| 23        | Temperature in 0°                                              |                       | 33°C                       | 33°C                          | 34°C              | 34°C                    | 32°C                     | 32°C                    | 34°C                    | 34°C                         | 34°C                          | 33°C                         | 30°C                         | 30°C                            | 32°C                         | 32°C                            | 32°C             |
| 24        | Coliform (MPN)                                                 | ND in<br>100ml        | Absent                     | Absent                        | Absent            | Absent                  | Absent                   | Absent                  | Absent                  | Absent                       | Absent                        | Absent                       | Absent                       | Absent                          | Absent                       | Absent                          | Absent           |

Norm as per IS 10500:2012

Sr. Manager (Gaology) Environment Panchpatmali Bauxile Mine NALCO, Damaniodi-183008

|     |                                                                 |                | For Augu           | st 2025               |           |                 |                  |          |                 |                      |                       |                     |                     |                        |                     |                        |        |
|-----|-----------------------------------------------------------------|----------------|--------------------|-----------------------|-----------|-----------------|------------------|----------|-----------------|----------------------|-----------------------|---------------------|---------------------|------------------------|---------------------|------------------------|--------|
| SI. | Name of Tests                                                   | Permissible    | GW-1               | GW-2                  | GW-3      | GW-4            | GW-5             | GW-6     | GW-7            | GW-8                 | GW-9                  | GW-10               | GW-11               | GW-12                  | GW-13               | GW-14                  | GW-1   |
| No  | 5-                                                              | Limits         | Metingi<br>Village | Chhatamb<br>a Village | Panasaput | Jhariapad<br>ar | Tentulipad<br>ar | Ichhapur | Mundagad<br>ati | Bijaghati<br>Village | Putraghati<br>Village | Chararha<br>Village | Kapsiput<br>Village | Jambagur<br>ha Village | Shriguda<br>Village | Kakirigum<br>a Village |        |
| 1   | ,H at 30°C                                                      | 6.5-8.5        | 7.25               | 6.83                  | 6.75      | 6.74            | 8.23             | 7.13     | 6.99            | 7.01                 | 6.95                  | 5.96                | 6,96                | 6.74                   | 7.04                | 6.9                    | 6.91   |
| 2   | D.O. (mg1)                                                      |                | 4                  | 4.2                   | 4.3       | 4.2             | 4.3              | 4.4      | 4               | 4.2                  | 3.6                   | 4.4                 | 4.6                 | 4.1                    | 4.3                 | 4.2                    | 4.6    |
| 3   | T.D.S (mg/l)                                                    | 2000           | 60                 | 172                   | 162       | 166             | 20               | 154      | 166             | 156                  | 204                   | 216                 | 120                 | 140                    | 98                  | 140                    | 280    |
| 4   | Total Hardness. as<br>CaCo <sub>3</sub>                         | 600            | 52                 | 124                   | 128       | 120             | 16               | 92       | 104             | 104                  | 104                   | 108                 | 48                  | 44                     | 28                  | 112                    | 128    |
| 5   | Total Alkalinity (as<br>CaCo <sub>3</sub> ) (mg/l)              | 600            | 33                 | 110                   | 103.4     | 107.8           | 11               | 94.6     | 94.6            | 103.4                | 24.2                  | 35.2                | 52                  | 26.4                   | 48                  | 84                     | 81     |
| 6   | B.O.D.                                                          | 30             | <1.0               | <1.0                  | <1.0      | <1.0            | <1.0             | <1.0     | <1.0            | <1.0                 | <1.0                  | <1.0                | <1.0                | <1.0                   | <1.0                | <1.0                   | <1.0   |
| 7   | Nitrate as No; (mg/1)                                           | 45             | 0.34               | 0.09                  | 0.2       | <0.05           | <0.05            | 0.27     | 0.39            | 0.09                 | 44.5                  | 43.8                | 0.21                | 0.7                    | 0.9                 | 0.41                   | 0.42   |
| 8   | Chlorides as Cl (mg l)                                          | 1000           | 4                  | 6                     | 8         | 4               | 4                | 10.01    | 12.01           | 8                    | 54.05                 | 54.05               | 16.01               | 24.02                  | 32.03               | 8                      | 10.0   |
| 9   | Sulphate as SO <sub>4</sub> (mg/l)                              | 400            | 19.4               | 4.2                   | 2.4       | 4.4             | <1.0             | 12.4     | 10.9            | 12.4                 | 18.4                  | 8.1                 | 10.9                | 2.4                    | 4,4                 | 2.4                    | 2.8    |
| 10  | Calcium as Ca (mg1)                                             | 200            | 9.6                | 27.2                  | 20.8      | 22.4            | 3.2              | 20.8     | 17.6            | 16                   | 17.6                  | 19.2                | 12.8                | 9.6                    | 8                   | 17.6                   | 20.8   |
| 11  | Magnesium as Mg<br>(mg/l)                                       | 100            | 6.8                | 13.6                  | 18.4      | 15.5            | 1.9              | 0.8      | 14.5            | 15.5                 | 14.5                  | 14.5                | 3.88                | 4.86                   | 1.94                | 16.52                  | 18.4   |
| 12  | Turbidity (NTU)                                                 | 10             | <0.1               | <0.1                  | <0.1      | <0.1            | <0.1             | 0.8      | <0.1            | 0.4                  | 0.9                   | 5                   | <0.1                | 1.8                    | <0.1                | 3                      | 3      |
| 13  | Fluoride as F (mg/l)                                            | 1.5            | 0.1                | 0.14                  | 0.12      | 0.1             | <0.1             | 0.2      | <0.1            | <0.1                 | <0.1                  | <0.1                | <0.1                | <0.1                   | <0.1                | <0.1                   | <0.1   |
| 14  | Phenlic compounds as<br>C <sub>0</sub> H <sub>2</sub> OH (mg/l) | 0.002          | <0.001             | <0.001                | <0.001    | <0.001          | <0.001           | <0.001   | <0.001          | <0.001               | <0.001                | <0.001              | <0.001              | <0.001                 | <0.001              | <0.001                 | <0.00  |
| 15  | Arsenic as As (mg1)                                             | 0.01           | 0.001              | 0.002                 | 0.004     | 0.001           | 0.003            | 0.006    | 0.002           | 0.005                | 0.005                 | 0.006               | <0.001              | < 0.001                | <0.001              | <0.001                 | <0.00  |
| 16  | Mercury as Hg (mg 1)                                            | 0.001          | <0.0005            | <0.0005               | <0.0005   | <0.0005         | <0.0005          | <0.0005  | <0.0005         | <0.0005              | <0.0005               | <0.0005             | <0.0005             | <0.0005                | <0.0005             | <0.0005                | <0.00  |
| 17  | Lead as Pb (mg/l)                                               | 0.05           | <0.005             | <0.005                | <0.005    | 0.005           | <0.005           | <0.005   | 0.006           | <0.005               | <0.005                | 0.009               | <0.005              | <0.005                 | <0.005              | <0.005                 | <0.00  |
| 1   | 8 Cadmium as Cd (mg1)                                           | 0.01           | <0.001             | <0.001                | <0.001    | <0.001          | <0.001           | <0.001   | <0.001          | <0.001               | <0.001                | <0.001              | <0.001              | <0.001                 | <0.001              | <0.001                 | <0.00  |
| 19  | Chromium Cr <sup>-6</sup> (mg·1)                                | 0.05           | <0.01              | <0.01                 | <0.01     | <0.01           | <0.01            | <0.01    | <0.01           | <0.01                | <0.01                 | <0.01               | <0.01               | <0.01                  | <0.01               | <0.01                  | <0.0   |
| 20  | Copper as Cu (mg/l)                                             | 1.5            | <0.02              | 0.048                 | <0.02     | <0.02           | <0.02            | <0.02    | <0.02           | <0.02                | <0.02                 | <0.02               | <0.02               | <0.02                  | <0.02               | <0.02                  | <0.0   |
| 21  | Zinc as Zn (mg 1)                                               | 15             | 0.377              | 0.24                  | <0.05     | 0.38            | <0.05            | 0.18     | 0.21            | 0.34                 | 1.06                  | 1.03                | < 0.05              | < 0.05                 | < 0.05              | < 0.05                 | < 0.0  |
| 22  | Iron as Fe (mg 1)                                               | 1              | 0.07               | 0.12                  | 0.24      | <0.05           | <0.05            | 0.17     | 0.98            | 0.9                  | 0.3                   | 0.17                | 0.24                | < 0.05                 | 0.9                 | 0.6                    | 0.58   |
| 23  | Temperature in 0 <sup>c</sup>                                   |                | 24.8               | 24.8                  | 24.2      | 24.2            | 24.2             | 24.8     | 24.8            | 24.6                 | 24.2                  | 24.8                | 24.8                | 24.8                   | 24.8                | 24.8                   | 23.8   |
| 24  | Coliform (MPN)                                                  | ND in<br>100ml | Absent             | Absent                | Absent    | Absent          | Absent           | Absent   | Absent          | Absent               | Absent                | Absent              | Absent              | Absent                 | Absent              | Absent                 | Absent |

Sr. Manager (Gastogy)-Environment Panchpatmal Bauxite Mine Panchpatmal Bauxite Mine NALCO, Damaniodi-183008

#### **ANNEXURE-III**

### STATUS OF ACTION PLAN FOR WILD LIFE MANAGEMENT IN THE CORE ZONE OF THE PANCHPATMALI SOUTH BLOCK BAUXITE MINE

| (   | Taken  | un | by  | NAI | CO. | the | user | agency | 1 |
|-----|--------|----|-----|-----|-----|-----|------|--------|---|
| - 1 | * **** |    | ~ , |     |     | ,   |      |        | , |

| OT 1:0 | T                                                                               | (Taken up by NALCO,the user agency)                                                                                                                                                                                                                                                                                                                                                                     |
|--------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SL.NO. | Action plan                                                                     | Status                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1      | Plantation 80 ha with stone wall fencing                                        | Mining activities have started at South Block in May 2017 Development of haul roads, peripheral barriers, etc have started in South Block in order to enable excavation of bauxite. Backfilling and plantation of mined out area has started from year 2021-22.                                                                                                                                         |
| 2      | Provision of Van<br>Sahayaks (two nos)                                          | Already 7 no of watch and ward is provided to look after plantation done in south block along access roads, conveyor corridor, slopes                                                                                                                                                                                                                                                                   |
| 3      | to watch plantation                                                             | etc.                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3      | Noise pollution control                                                         | At present blasting has not started in South Block. All noise pollution control measures like use of NONEL in blasting, etc will be undertaken when blasting is adopted. At present other contro measures like maintenance of vehicles, plantation of trees in mine periphery, provision of ear plug and ear muff to workers, etc. are being taken.                                                     |
| 4      | Dust pollution control                                                          | Use of mobile sprinklers is undertaken for suppression of dust in hauroads and stockpile areas. Provision of PLC controlled Autosprinkling system installed over Permanent haul roads (4 km). Dry fog system has been adopted in crushers. One fog cannon has been installed for dust suppression in stockpile area. Plantation along periphery, etc. is being taken up to prevent propagation of dust. |
| 5      | Water pollution control                                                         | All water pollution control measures like diversion of runoff to pit to prevent discharge of rain water down below the valley, treatment of vehicle wash water & canteen waste water, recycling of treated waste water, etc have been undertaken. 15 nos of check dams have already been constructed down below the valley to retain washout if any.                                                    |
| 6      | Contour trench<br>staged to prevent soil<br>loss and promote<br>growth of grass | After reclamation and rehabilitation, the surface will become almost flat. Wherever required contour trenches will be provided.                                                                                                                                                                                                                                                                         |
| 7      | Grass seeding to prevent soil erosion                                           | There will be no soil loss from the mined out area as it will be surrounded by a in-situ peripheral barrier all around. However grass turfing with native grass species are being provided to prevent soil erosion wherever there will be slopes in the mined out area. Grass turfing carried out during 2025-26 is 3000 sqr.mtr.                                                                       |
| 8      | Water harvesting structure for wild life                                        | Three nos of rain water harvesting structure already provided in South block. More nos will be provided as the mining progresses.                                                                                                                                                                                                                                                                       |
| 9      | Barbed wire fencing to prevent falling of animal into the pit.                  | The mined out area will be almost flat after reclamation and rehabilitation for any animal to fall down into the pit. However wherever any such situation arises barbed wire fencing will be provided.                                                                                                                                                                                                  |
| 10     | Fire line 12 km                                                                 | Every year fire lines 5.5 km long on the western side and 3.6 km long on the eastern side of South Block are being provided depending upon the requirement to prevent spread of fire to the access road plantation and slope plantation during summer.                                                                                                                                                  |
| one 11 | Fire watchers 2 nos                                                             | Fire watchers (7 nos) are provided throughout the year to report on fire incidence to fire brigade and also to fight minor fires.                                                                                                                                                                                                                                                                       |
| 12 12  | Light pollution                                                                 | High mast light is provided only along the haul road and stockpile area for safe working. It will not have any effect on other areas.                                                                                                                                                                                                                                                                   |
| 13     | Signage                                                                         | Signage have been put at strategic locations highlighting importance of maintaining environment.                                                                                                                                                                                                                                                                                                        |

O COMPANIE

| 14 | Garbage<br>management | Non-biodegradable waste is collected and dumped in mined out area.<br>Biodegradable waste like canteen waste, etc. are collected and treated<br>in 3 no's of biogas plants located in the Mines.                                                                                                                                                                                                                                                                            |
|----|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15 | Awareness             | Awareness among the employees and workers being created by organizing mass plantation drives during celebration of World Environment Day, Vana Mahotsav Week, EMAP program, MEMC Week, etc.  Besides villagers in the surrounding area are being distributed fruit bearing trees every year to create awareness about importance of tree plantation and they are also explained about having compassion towards wildlife for maintaining a healthy ecosystem in the region. |

(P Mohanta)
Chief General Manager(Mines)

PURUSOTTAM MOHANTA Chief General Manager (Mines) Panchpatmali Bauxite Mines NALCO, Damanjodi-763008

### ANNEXURE-IV AMBIENT NOISE LEVEL MEASUREMENT IN AND AROUND PANCHPATMALI SOUTH BLOCK BAUXITE MINE FOR 2025-26

| SI.<br>No. | Monitoring<br>station code & its<br>direction                           | Category | Date     |      | e level<br>B(A) | Date     | le        | vel<br>(A) | Date |     | e level<br>(A) | Date | 1   | e level<br>(A) |
|------------|-------------------------------------------------------------------------|----------|----------|------|-----------------|----------|-----------|------------|------|-----|----------------|------|-----|----------------|
|            | G., 50                                                                  |          |          | Day  | Night           |          | Day Night |            |      | Day | Night          |      | Day | Night          |
| 1          | N11 SB Stock Pile-<br>S                                                 | A        | 21.04.25 | 55.1 | 42.6            | 06.08.25 | 67.6      | 59.9       |      |     |                |      | 1   |                |
| 2          | N12 Putraghati<br>Village- SW                                           | С        | 21.04.25 | 46   | 48,1            | 06.08.25 | 53.6      | 43.9       |      |     |                |      |     |                |
| 3          | N13 Bhitara<br>Bhejaput Village-<br>NW                                  |          | 22.04.25 | 46.2 | 39.1            | 06.08.25 | 49.1      | 45         |      |     |                |      |     |                |
| 4          | N14 Lachumani<br>Village- SW                                            | С        | 22.04.25 | 48   | 42.3            | 06.08.25 | 48.3      | 37.8       |      |     |                |      |     |                |
| 5          | N15<br>Mundagahrati<br>Village- NE                                      | С        | 22.04.25 | 53.2 | 34.6            | 06.08.25 | 48.6      | 40.8       |      |     |                |      |     |                |
| 6          | N16 Near bridge<br>01 of cable belt<br>conveyor                         | A        | 22.04.25 | 56.8 | 36.6            | 06.08.25 | 69.5      | 63.7       |      |     |                |      |     |                |
| 7          | N17 Below bridge<br>02 of cable belt<br>conveyor                        |          | 22.04.25 | 59.1 | 38.2            | 06.08.25 | 70.4      | 61.6       |      |     |                |      |     |                |
| 8          | N18 Near bridge<br>03 of cable belt<br>conveyor                         | A        | 22.04.25 | 56.2 | 41.3            | 06.08.25 | 70.8      | 62.2       |      | 2   |                |      |     |                |
|            | N19 Near bridge<br>04 of cable belt<br>conveyor                         | A        | 22.04.25 | 59.1 | 37.3            | 06.08.25 | 71.1      | 64.3       |      |     |                |      |     |                |
| 10         | N20 Below bridge<br>05 of cable belt<br>conveyor                        | A        | 22.04.25 | 57.2 | 39.4            | 06.08.25 | 71        | 63.7       |      |     |                |      |     |                |
| 11         | N21 At kardiguda<br>village Near<br>bridge 04 of cable<br>belt conveyor | С        | 22.04.25 | 57.6 | 42.6            | 06.08.25 | 68.9      | 61.3       |      |     |                |      | 5   | . *            |
|            | N22 Near bridge<br>06 of cable belt<br>conveyor                         |          | 22.04.25 | 55.7 | 42.5            | 06.08.25 |           | 60.8       |      |     |                | -    |     |                |
| 13         | N23 Discharge<br>gantry bridge                                          | А        | 22.04.25 | 59.1 | 40.1            | 06.08.25 | 64.7      | 58.3       |      |     |                |      |     |                |

|        | Norm             | Limi        | tele          |
|--------|------------------|-------------|---------------|
|        | dB(A             |             |               |
| Catego | ory of area/zone | Day<br>time | Night<br>time |
| (A)    | Industrial area  | 75          | 70            |
| (B)    | Commercial area  | 65          | 55            |
| (C)    | Residential area | 55          | 45            |
| (D)    | Silence<br>zone  | 50          | 40            |

St. Hander Grant Bautile Mine of St. Hander Grant Bautile Mine of the Co. Opina Hood Roads

#### ANNEXURE-V

WASTE WATER ANALYSIS AT PANCHPATMALI SOUTH BLOCK BAUXITE MINE (2025-26)

|                                                    |          |        |             |             |             |             | w           | W1     |        |        |        |        |        |        |             |             |             |             | W           | W2     |                 |              |               |                      |                                                    | Ave         |      |  |  |  |  |  |
|----------------------------------------------------|----------|--------|-------------|-------------|-------------|-------------|-------------|--------|--------|--------|--------|--------|--------|--------|-------------|-------------|-------------|-------------|-------------|--------|-----------------|--------------|---------------|----------------------|----------------------------------------------------|-------------|------|--|--|--|--|--|
| Parameter                                          | NORM     | Apr-25 | May-25      | Jun-25      | Jul-25      | Aug-25      | Sep-25      | Oct-25 | Nov-25 | Dec-25 | Jan-26 | Feb-26 | Mar-26 | Apr-25 | May-25      | Jun-25      | Jul-25      | Aug-25      | Sep-25      | Oct-25 | Nov-25          | Dec-25       | Jan-26        | Feb-26               | Mar-26                                             | WW1         | w    |  |  |  |  |  |
| Temperature<br>(°C)                                |          | 32     | 24.2        | -           | 24.3        | _           | 24.8        |        |        |        |        |        |        | 32     | 24.2        | 24.1        | +           | +-          | 24.9        |        |                 |              |               |                      |                                                    | 25.733      | 25   |  |  |  |  |  |
| pH Value                                           | 5.5-9.0  | 7      | 5.02        | 5.6         | 5.62        | 5.62        | 5.7         |        |        |        |        |        |        | 7      | 6.26        | 6.3         | 6.7         | 7           | 7           |        |                 |              |               |                      |                                                    | 5.760       | 6.   |  |  |  |  |  |
| Dissolve                                           |          | 4      | 6.6         | 5.8         | 6.6         | 6.6         | 6.6         |        |        |        |        |        |        | 3.8    | 6.6         | 6.6         | 6.7         | 6.4         | 6.4         |        |                 |              |               |                      |                                                    | 6.033       | 6.   |  |  |  |  |  |
| Oxygen, mg/l<br>Total                              |          | 143    | 68          | 80          | 68          | 90          | 110         |        |        |        |        |        |        | 114    | 90          | 94          | 90          | 84          | 68          |        |                 |              |               |                      |                                                    | 93.167      | 90.  |  |  |  |  |  |
| Dissolved<br>Solids, mg/l                          |          |        |             | -           | 1.          |             |             |        |        |        |        |        |        | 56     | 43          | 44          | 45          | 28          | 28          |        |                 |              |               |                      |                                                    | 36.000      | 40   |  |  |  |  |  |
| Total<br>Hardness (as<br>CaCO <sub>3</sub> ), mg/l |          | 64     | 25          | 52          | 25          | 34          | 16          |        | ١      |        |        |        |        | 20     | 43          |             | **          | 20          | 20          |        |                 |              |               |                      |                                                    | 36.000      |      |  |  |  |  |  |
| Suspended<br>Solids mg/l                           | 100      | < 1.0  | 8           | <2.5        | 8           | 10          | 12          |        |        |        |        |        |        | <1.0   | 8           | 6.2         | 8.5         | 8.4         | 10          |        |                 |              |               |                      | e 1                                                | 9.500       | 8.3  |  |  |  |  |  |
| 8.O.D mg/l 3<br>days at 27°C                       | 30       | 28     | 15          | 12          | 15          | 12          | 18          |        |        |        |        |        |        | <3.0   | <1.0        | <1.0        | <1.0        | 4           | 5           |        |                 |              |               |                      |                                                    | 16.667      | 4    |  |  |  |  |  |
| C.O.D mg/l                                         | 250      | 154    | 61          | 52          | 61          | 72          | 57.6        |        |        |        |        |        |        | 13     | <5.0        | <5.0        | <5.0        | 9.6         | 14.6        |        |                 |              |               |                      |                                                    | 76.267      | 12.  |  |  |  |  |  |
| Nitrate (as<br>NO3), mg/l                          |          | 2.13   | 4.27        | 5.2         | 4.27        | 2.2         | 2.4         |        |        |        |        |        |        | 0.96   | 5.85        | 6.2         | 5.6         | 0.8         | 0.21        |        |                 |              |               |                      |                                                    | 3.412       | 3.2  |  |  |  |  |  |
| Chloride as Cl<br>– mg/l                           | •        | 40     | 18.01       | 18          | 18          | 1.1         | 22          |        |        |        |        |        |        | 36     | 14.01       | 14          | 14          | <1.0        | 8           |        |                 |              |               |                      |                                                    | 19.522      | 17.  |  |  |  |  |  |
| Sulphate (as<br>SO4), mg/l                         | •        | 4      | 8           | 8.2         | 8.8         | 3.2         | 1.8         |        |        |        |        |        |        | 1      | 19          | 18          | 19          | 4.8         | <1.0        |        |                 |              |               |                      |                                                    | 5.667       | 12.  |  |  |  |  |  |
| Calcium (as<br>Ca), mg/l                           |          | 18     | 4.3         | 12.8        | 4.5         | 1.94        | 3.2         |        |        |        | 4      |        |        | 16     | 14.4        | 12.8        | 14.4        | 2.91        | 4.8         |        |                 |              |               |                      |                                                    | 7.457       | 10.8 |  |  |  |  |  |
| Magnesium<br>(as Mg), mg/l                         | •        | 5      | 3.45        | 4.86        | 3.55        | 0.21        | 1.94        |        |        |        |        |        |        | 4      | 1.7         | 2.91        | 1.7         | <0.1        | 3.88        |        |                 |              |               |                      |                                                    | 3.168       | 2.8  |  |  |  |  |  |
| Fluoride as F ,<br>mg/l                            | 2        | 0.37   | <0.1        | <0.1        | <0.1        | <0.5        | 0.22        |        |        |        |        |        |        | 0.244  | 0.140       | 0.2         | 0.14        | <0.5        | <0.1        |        |                 |              |               |                      |                                                    | 0.296       | 0.1  |  |  |  |  |  |
| Phenolic<br>Compounds,                             | 1        | <0.01  | <0.5        | <0.5        | <0.5        | 0.004       | <0.5        |        |        |        |        |        |        | <0.01  | <0.5        | <0.5        | €0.5        | 0.01        | <0.5        |        |                 |              |               |                      |                                                    | 0.004       | 0.0  |  |  |  |  |  |
| Arsenic (as<br>As), mg/l                           | 0.2      | <0.05  | <0.00<br>1  | <0.00       | <0.0<br>01  | <0.000<br>5 | <0.00<br>1  |        |        |        |        |        |        | <0.05  | <0.00       | <0.00       | <0.0<br>01  | <0.00<br>05 | <0.00<br>1  |        |                 |              |               |                      |                                                    | 0.009       | 0.0  |  |  |  |  |  |
| Mercury (as<br>Hg), mg/l                           | 0.01     | <0.01  | <0.00<br>05 | <0.00<br>05 | <0.0<br>005 | <0.005      | <0.00<br>05 |        |        |        |        |        |        | <0.01  | <0.00<br>05 | <0.00<br>05 | <0.0<br>005 | <0.00<br>5  | <0.00<br>05 |        |                 |              |               |                      |                                                    | 0.003       | 0.0  |  |  |  |  |  |
| Lead (as Pb),<br>mg/l                              | 0.1      | <0.01  |             |             |             | <0.001      | _           |        |        |        |        |        |        | <0.01  | <0.00<br>5  |             |             |             |             |        |                 |              |               |                      |                                                    | 0.005       | 0.0  |  |  |  |  |  |
| Cadmium (as<br>Cd), mg/l                           | 2        | <0.01  |             | _           | <0.0<br>01  | <0.01       | <0.00<br>1  |        |        |        |        |        |        | <0.01  | <0.00       |             |             | <0.01       | _           |        |                 |              |               |                      |                                                    | 0.004       | 0.0  |  |  |  |  |  |
| Chromium (as<br>Cr <sup>+6</sup> ), mg/l           | 0.1      | <0.05  |             | <0.01       | <0.0        | <0.02       | <0.01       |        |        |        |        |        |        | <0.05  | €0.01       | <0.01       |             | <0.02       | <0.01       |        |                 |              |               |                      |                                                    | 0.018       | 0.0  |  |  |  |  |  |
| Copper (as<br>Cu), mg/l                            | 3        | <0.05  | <0.02       | <0.02       | <0.0        | 0.06        | <0.02       |        |        |        |        |        |        | <0.05  | €0.02       | <0.02       |             | 0.06        | <0.02       |        |                 |              | 7             |                      | 1                                                  | 0.03        | 0.1  |  |  |  |  |  |
| Zinc (as Zn)<br>mg/l                               | 5        | <0.05  | <0.05       | <0.05       | <0.0<br>5   | 0.71        | <0.05       |        |        |        |        |        |        | <0.05  | <0.05       | <0.05       | -           | 5.71        | <0.05       |        |                 |              |               |                      |                                                    | 0.15        | 0.9  |  |  |  |  |  |
| Iron (as Fe),<br>mg/l                              | 3        | 0.46   | 0.9         | 0.9         | 0.9         | <1.0        | 0.8         |        |        |        |        |        |        | 0.385  | 0.6         | 0.6         | 0.6         | <1.0        | 5.82        |        |                 |              |               |                      | 0                                                  | 0.7924      | 1.6  |  |  |  |  |  |
| Oil and<br>grease                                  | 10       | 0.9    | <1.0        | <1.0        | <1.0        | 5.62        | <1.0        |        |        |        |        |        |        | 1.000  | <1.0        | <1.0        | <1.0        | 7           | <1.0        |        |                 |              |               |                      |                                                    | 1.75        | 2.00 |  |  |  |  |  |
|                                                    |          |        |             |             |             |             |             |        |        |        |        |        |        |        |             |             |             |             |             |        |                 |              | HEM           |                      |                                                    |             |      |  |  |  |  |  |
| WW1-treated Canteen                                | water fr | om     |             |             |             |             |             |        |        |        |        |        |        | WW2-I  | reated      | water       | from H      | HEMM        | area        |        |                 |              | orea<br>out   | cl                   | nail                                               |             |      |  |  |  |  |  |
| * Parameters a                                     | re withi | n perm | issible     | norms       |             |             |             |        |        |        |        |        |        | NT- N  | ot trace    | eable       |             | 7           | 5           | 161    | Minte<br>arrite | Tan<br>er (G | Solo          | Banx<br>ghl-E<br>bar | inavironite Mile Mile Mile Mile Mile Mile Mile Mil | 3008<br>WUR | 5    |  |  |  |  |  |
|                                                    |          |        |             |             |             |             |             |        |        |        |        |        |        |        |             |             |             |             | ,           | 5r. M  | ball<br>Suga    | CO           | DSL<br>Illian | olusi                | di-78                                              |             |      |  |  |  |  |  |